
Three-dimensional magnetotelluric modeling in a mixed
space-wavenumber domain

Shikun Dai1, Dongdong Zhao2, Shunguo Wang3, Kun Li4, and Hormoz Jahandari5

ABSTRACT

We have developed a new 3D magnetotelluric modeling
scheme in a mixed space-wavenumber domain. The modeling
scheme is based on using a 2D Fourier transform along two hori-
zontal directions to solve a vector-scalar potential formula derived
from Maxwell’s equations based on the primary-secondary po-
tential separation. The derived 1D governing equations in a mixed
space-wavenumber domain are solved by using the finite-element
method (FEM) together with a chasing method, and then the 2D
inverse Fourier transform is used to recover the final solution of
the electromagnetic (EM) fields in the 3D spatial domain. An iter-
ative scheme is applied to approximate the true solution by re-
peating the previous steps because the governing equations
cannot be solved directly due to an unusual primary-secondary

potential field separation used. Nevertheless, the new method is
capable of reducing the memory requirement and computational
time in the mixed domain, and the 1D governing equations are
highly parallel among different wavenumbers. For each of the 1D
equations, the two- or four-node Gaussian quadrature rule can be
used in both horizontal directions for Gauss fast Fourier trans-
form. It is worth mentioning that the linear matrix equation to
be solved is a fixed bandwidth system, and the chasing method
is more efficient and convenient than solvers with preconditioners
for the 1D matrix equations. The reliability and efficiency of the
newly proposed method are verified with three synthetic 3D mod-
els by comparisons with a classical integral equation solution, an
adaptive FEM solution, and a nonadaptive FEM solution. The
proposed algorithm will be used in electrical resistivity tomogra-
phy and controlled-source EM methods in future studies.

INTRODUCTION

The magnetotelluric (MT) method plays an important role in vari-
ous applications, such as crustal structure studies, environment in-
vestigation, and resource exploration. Highly efficient and accurate
solutions of 3D large-scale electromagnetic (EM) equations become
practical to simulate observations from geophysical surveys and
then solve the EM inverse problem (Zhdanov, 2010). Many algo-
rithms have been proposed for 3D MT modeling (e.g., Varentsov,
1983; Wannamaker et al., 1984a; Newman and Alumbaugh, 2000;
Mitsuhata and Uchida, 2004; Egbert and Kelbert, 2012; Ren et al.,
2013; Jahandari et al., 2017). From the perspective of solving the
EM fields or their potentials, MT forward modeling can be cata-
loged into two types: (1) the EM-field approach (Mackie et al.,

1994; Varilsuha and Candansayar, 2018) and (2) the potential ap-
proach (Um et al., 2010; Mukherjee and Everett, 2011; Jahandari
and Farquharson, 2014, Varilsuha and Candansayar, 2018). Both
approaches can accurately solve the relevant partial differential
equations (PDEs) derived from Maxwell’s equations with consid-
eration of an appropriate boundary condition.
The EM-field approach solves the conventional EM Helmholtz

equation consisting of either the electric or magnetic fields as un-
known quantities in the spatial domain. The principle of this approach
is relatively simple and straightforward, but the main drawback of the
EM-field approach is that it will violate the divergence-free condition
of current due to the accumulation of round-off errors if an iterative
solver is used for simulations with low frequency (Lynch and Paul-
sen, 1991). However, the application of the vectorial finite-element
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method (FEM) to the solutions of the E-field (Sugeng, 1998; Liu
et al., 2008; Farquharson and Miensopust, 2011; Ren et al., 2013;
Grayver and Kolev, 2015; Key, 2016) and H-field (Franke et al.,
2007) diffusion equation overcomes those difficulties mentioned pre-
viously for the EM-field approach.
The potential approach that discretizes the EM problem based on

a vector-scalar potential formulation instead of directly using elec-
tric and magnetic fields also has been suggested. Various gauge
methods have been used in a vector-scalar potential formula, and
the potential approach can be further divided into the ungauged ap-
proach (Mukherjee and Everett, 2011; Ansari and Farquharson,
2014), Coulomb-gauge approach (Haber et al., 2000; Jahandari
and Farquharson, 2014), Lorenz-gauge approach (Um et al.,
2010), and axial-gauge approach (Varilsuha and Candansayar,
2018). These approaches have two main features: (1) using vector
and scalar potentials allows the divergence correction scheme to be
included implicitly in the stiffness matrix and (2) there are more
nonzero elements in the assembled large stiffness matrix compared
with the EM-field approaches. Although the solutions of the vector
and scalar potentials are not unique, the corresponding EM fields
are unique in the ungauged case.
For either the EM-field approach or the vector-scalar potential

approach, the integral equation (IE) method (e.g., Wannamaker
et al., 1984b; Avdeev et al., 2002; Avdeev and Avdeeva, 2009; Kru-
glyakov and Bloshanskaya, 2017), finite-difference method
(e.g., Varentsov, 1983; Mackie et al., 1994; Newman and Alum-
baugh, 1995; Haber et al., 2000; Sasaki, 2001; Shen, 2003), fi-
nite-volume method (e.g., Haber et al., 2000; Haber and Ascher,
2001; Streich, 2009; Jahandari and Farquharson, 2014, 2015),
and FEM (Zunoubi et al., 1999; Nam et al., 2007; Um et al.,
2010; Mukherjee and Everett, 2011; Ren et al., 2013; Ansari
and Farquharson, 2014; Jahandari et al., 2017) are often selected
to solve the Helmholtz equations. Note that an explicit divergence
correction is required when using the EM-field approach, and it not
only ensures the conservation of currents inside an element but also
speeds up the convergence process by reducing the number of iter-
ations for the numerical solution (Mackie et al., 1994; Smith, 1996).
Direct solvers (e.g., SuperLU and Multifrontal Massively Parallel
Sparse direct Solver [MUMPS]) or iterative solvers (e.g., Portable
Extensible Toolkit for Scientific Computation (PETSc) and gener-
alized minimum residual method [GMRES]) can be selected to
solve the assembled matrix equation, which also influences the cal-
culation accuracy and efficiency (Saad, 2003; Streich, 2009; da
Silva et al., 2012; Jahandari and Farquharson, 2014).
In 3D MT modeling, computation and memory requirements for

field data are enormous, especially when a large-scale sparse linear
system is solved. Therefore, regardless of whether one uses the EM-
field approach or the potential approach, further development of the
3D MT modeling algorithm should focus on improving computa-
tional efficiency while preserving high accuracy. From the perspec-
tive of differential equations, we propose to carry out the 3D MT
forward modeling by obtaining the solution in a mixed space-wave-
number domain based on the potential approach. This method has
been used in gravity and magnetic modeling (Dai et al., 2019). Us-
ing the method, the 3D vector-scalar potential PDEs are converted
into 1D governing equations with different independent wavenum-
bers by 2D Fourier transform along two horizontal directions in the
Cartesian coordinate system. The 1D governing equations with dif-
ferent wavenumbers support parallel computation on high-perfor-

mance computers. In the vertical dimension, the accuracy and
the efficiency are balanced by increasing the mesh size as the depth
increases. For the transformed 1D differential equations, the FEM
combined with a chasing approach is applied for an accurate and
efficient solution of 3D MT modeling. Because the total electric
field is involved in the final matrix equation, an iterative approach
is required to approximate the final solution. Three 3D models with
different anomalies are used to verify the accuracy and the reliabil-
ity of the proposed algorithm by comparisons between the proposed
method and a classical IE method, a spatial domain adaptive FEM,
and a spatial domain nonadaptive FEM.

BASIC THEORY

Gauged EM potentials

Assuming the time dependence of e−iωt in the frequency domain,
the EM fields satisfy the Maxwell equations:

∇ × E ¼ iωμ0H; (1)

∇ ×H ¼ JS þ ðσ − iωεÞE; (2)

where E and H represent the electric field (V/m) and the magnetic
field (A/m), respectively, in the frequency domain; ω represents an-
gular frequency; i represents the imaginary unit; σ represents the
conductivity (S/m); ε represents the dielectric permittivity (F/m);
and JS only represents the current density (A/m2). Within the
MT frequency band (approximately 10−5–104 Hz), the displacement
current is negligible, and the free-space magnetic permeability
is μ0 ¼ 4π × 10−7 H∕m.
The electric field E can be described by a vector potential (A) and

a scalar potential (Φ) (Haber et al., 2000), where A is known as the
magnetic potential and Φ is the electric potential. The value A is a
vector perpendicular to the magnetic induction intensity B:

B ¼ ∇ × A: (3)

The electric field E then can be written in terms of the vector
potential A and the scalar potential Φ as

E ¼ iωA − ∇Φ: (4)

In terms of the EM potentials, equation 2 can be written as the
curl-curl equation:

∇ × ð∇ × AÞ ¼ μ0JS þ μ0σðiωA − ∇ΦÞ: (5)

Using the vector identity ∇ × ð∇ × AÞ ¼ ∇ð∇ · AÞ − ∇2A and
the Coulomb gauge condition of ∇ · A ¼ 0 obtains that equation 5
is equivalent to

∇2Aþ k2A − μ0ŷ∇Φ ¼ −μ0JS; (6)

where k ¼ ffiffiffiffiffiffiffiffiffiffi
iωμσ

p
is wavenumber in the frequency domain and

ŷ ¼ σ represents the admittivity when the displacement current
is negligible.
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The divergence-free condition of the current density,
J ¼ JS þ σE, is satisfied as ∇ · J ¼ 0. Thus, to maintain a diver-
gence-free current density, the auxiliary equation can be written as

−∇ · JS ¼ ∇ · σE: (7)

Through replacing the electric field with the A −Φ combination
in equation 4, equation 7 can be reformed into

∇ · ðσ∇ΦÞ − iω∇ · ðσAÞ ¼ ∇ · JS: (8)

The system of equations for the vector potential A and scalar po-
tential Φ can be composed of equations 6 and 8 (Haber et al., 2000;
Badea et al., 2001) as�

∇2Aþ k2A − μ0σ∇Φ ¼ −μ0JS
∇ · ðσ∇ΦÞ − iω∇ · ðσAÞ ¼ ∇ · JS

: (9)

Equation 9 should be solved simultaneously as a coupled matrix
equation. There is no gauge freedom after applying Coulomb gauge
in this system because the solution’s vector potential A and scalar
potential Φ are unique, unlike the ungauged system (Varilsuha and
Candansayar, 2018). The equations of A and Φ can be used for 3D
forward modeling of MT, electrical resistivity tomography (ERT),
and controlled-source electromagnetic (CSEM) methods by tuning
the current density and frequency selection. Meanwhile, only 3D
MT modeling is presented in this study to illustrate the methodol-
ogy, and the JS term is neglected.
When a secondary potential formulation is used to model MT

signals, plane waves can be introduced conveniently by explicitly
calculating a set of known primary EM potentials (Ap, Φp). The
primary potentials can be the responses of a half-space or layered
electrical resistivity model. The disadvantage of the secondary EM
potentials algorithm is that it cannot be easily used for topography
inclusion in 3D EM simulation due to the lack of a direct solution of
the relevant primary potentials.
The equation of the primary EM potentials (Ap, Φp) can be

described as�
∇2Ap þ k2pAp − μ0σ

p∇Φp ¼ −μ0JS
∇ · ðσp∇ΦpÞ − iω∇ · ðσpApÞ ¼ ∇ · JS

: (10)

The secondary EM potentials (As,Φs) can be defined according to
A ¼ Ap þ As and Φ ¼ Φp þΦs. Then, by subtracting the primary
potentials from the total potentials, the governing equation 9 can be
rewritten as�

∇2As þ k2pAs − μ0σ
p∇Φs ¼ −μ0σsE

∇ · ðσp∇ΦsÞ − iω∇ · ðσpAsÞ ¼ ∇ · ðσsEÞ : (11)

Here, �
k2 ¼ k2p þ k2s
σ ¼ σp þ σs

; (12)

where k2p and k2s are the wavenumbers corresponding to the
primary and secondary EM potentials, respectively. Similarly,
σp and σs are the conductivity corresponding to the primary
and secondary EM potentials, respectively. The E ¼ Ep þ Es is
the total electric field, where Ep is the primary field and Es is
the second field. In the process of solving equation 11 for the first
iteration, only plane EM waves Ep are used to represent E, and the
initial value of the secondary field Es is zero. Then, the total field
E on the right side of equation 11 can be updated iteratively with
the sum of the secondary field Es and the primary field Ep. The
details of the iterative method are shown at the end of this section.
Equation 11 is different from the conventional equation used for
primary and secondary potential separation. This is because the
conventional equation contains the product of total conductivity
and secondary potential field (e.g., Badea et al., 2001; Chen
and Li, 2019), which results to complicate convolution after the
Fourier transform.
Equations 9 and 11, as well as their equivalent equations, have

been used in several studies (e.g., Haber et al., 2000, Badea et al.,
2001, Jahandari and Farquharson, 2015). However, the computa-
tional cost and memory requirements are large (Varilsuha and
Candansayar, 2018) due to the direct solver of the large sparse
matrix equation. This study proposes a new 3D MT modeling
method in a mixed space-wavenumber domain based on equa-
tion 11. This simulation method mainly includes four steps start-
ing from equation 11: (1) use the 2D Fourier transform along two
horizontal directions; (2) use the 1D FEM to solve 1D differential
equations with respect to the secondary EM potentials (As, Φs) in
the mixed space-wavenumber domain; (3) iteratively update the
electric field with a contraction operator until convergence; and
(4) recover the EM fields and other parameters, such as the imped-
ance tensor, in the spatial domain. To be specific, we transform x
and y from the spatial domain into the wavenumber domain using
Fourier transform regarding equation 11; then, only the vertical
direction z is preserved in the spatial domain. The 3D vector-scalar
potential equations are simplified into 1D equations. The given 1D
independent differential equations can be computed in parallel
among different wavenumbers, which improves the efficiency
of 3D MT numerical simulation through parallelization. The
FEM is used to solve the 1D equations of the secondary EM po-
tentials (As, Φs) subjected to different wavenumbers. Meanwhile,
a contraction operator based on the series expansion is used to
iteratively update the secondary electric field until the field cannot
be further updated. This is because the initial total electric field in
equation 11 is calculated with a half-space model, so that the pri-
mary field was used to represent the total field at the first iteration.
Then, the iteration lasts until the secondary electric field cannot be
further updated. After the calculation of the secondary electric
field is done, the secondary magnetic field can be recovered
through the corresponding potential As. Finally, using inverse fast
Fourier transform (FFT), we can add the secondary fields to the
spatial primary EM fields to give the solution of 3D MT modeling
in the spatial domain.

Governing equations in the mixed domain

By using the Coulomb gauge condition, equation 11 can be
written into subequations in the Cartesian coordinate system as

3D MT modeling in a mixed domain E207
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8>>>>>>>>>><
>>>>>>>>>>:

∂2As
x

∂x2 þ ∂2As
x

∂y2 þ ∂2As
x

∂z2 þ k2pAs
x − μ0σ

p ∂Φs

∂x ¼ −μ0jsx
∂2As

y

∂x2 þ ∂2As
y

∂y2 þ ∂2As
y

∂z2 þ k2pAs
y − μ0σ

p ∂Φs

∂y ¼ −μ0jsy
∂2As

z

∂x2 þ ∂2As
z

∂y2 þ ∂2As
z

∂z2 þ k2pAs
z − μ0σ

p ∂Φs

∂z ¼ −μ0jsz

σp
�

∂2Φs

∂x2 þ ∂2Φs

∂y2 þ ∂2Φs

∂z2

�
þ ∂Φs

∂z
∂σp
∂z − iωAs

z
∂σp
∂z

¼ ∂jsx
∂x þ

∂jsy
∂y þ ∂jsz

∂z

; (13)

where jsx ¼ σsEx, jsy ¼ σsEy, and jsz ¼ σsEz are current density in
three different directions, respectively.
In two horizontal directions, we transform spatially related

parameters into the wavenumber domain. Then, we obtain8>>>>>>>>>><
>>>>>>>>>>:

∂2 ~As
x

∂z2 þ ðk2p − k2x − k2yÞ ~As
x þ ikxμ0 ~σp ~Φs ¼ −μ0 ~jsx

∂2 ~As
y

∂z2 þ ðk2p − k2x − k2yÞ ~As
y þ ikyμ0 ~σp ~Φs ¼ −μ0 ~jsy

∂2 ~As
z

∂z2 þ ðk2p − k2x − k2yÞ ~As
z − ~σpμ0

∂ ~Φs

∂z ¼ −μ0 ~jsz�
~σp ∂2 ~Φs

∂z2 þ ∂ ~σp
∂z

∂ ~Φs

∂z − ~σpðk2x þ k2yÞ ~Φs
�

−iω ~As
z
∂ ~σp
∂z ¼ −ikx ~jsx − iky ~j

s
y þ ∂~jsz

∂z

; (14)

where the symbol ∼ marks parameters in a mixed space-wavenum-
ber domain (Table 1) and kx and ky are the wavenumbers in the
mixed domain. Similar to 3D modeling of gravity and magnetic
anomalies in a mixed space-wavenumber domain (Dai et al.,
2019), equation 14 describes the vector-scalar potentials governing
equations for 3D MT modeling with different wavenumbers in the

mixed domain after 2D Fourier transform along the horizontal x-
and y-directions. The selection of wavenumber with the Gauss
FFT method is based on the shift-sampling technique and Gaussian
quadrature rule (Wu and Tian, 2014), and it can efficiently over-
come the imposed periodicity and edge effect caused by FFT (Chai,
2009). Gauss FFT with a two- or four-node Gaussian quadrature
rule has been proven to support a solution equivalent to a solution
computed in the space domain (Wu and Tian, 2014; Dai
et al., 2019).
Through the preceding detailed formula derivation, a large-scale

3D complex EM equation system is transformed into a small-scale
1D simple EM equation system that is decoupled in horizontal
wavenumber and amenable to fully parallel computation. Thus, this
3D numerical modeling can be carried out on a multiple-core or a
multiple-CPU computer with open multiprocessing (OpenMP). It is
useful for large-scale EM surveys due to the reduction of memory
demand. To solve equation 14, we have to iteratively update EM
fields, for the reason mentioned.

Boundary conditions

In a source-free region, the boundary conditions for the secon-
dary EM potentials ( ~As, ~Φs) in the mixed space-wavenumber do-
main used in the modeling are shown as equations 15 and 16
(see more details in Appendix A):8>>>>><

>>>>>:

∂ ~As
x

∂z ¼ −s ~As
x þ ðt−sÞ

ω kx ~Φs

∂ ~As
y

∂z ¼ −s ~As
y þ ðt−sÞ

ω ky ~Φs

∂ ~As
z

∂z ¼ ikx ~A
s
x þ iky ~A

s
y

∂ ~Φs

∂z ¼ −t ~Φs

(15)

and 8>>>>><
>>>>>:

∂ ~As
x

∂z ¼ s ~As
x − ikx ~A

s
z þ skx ~Φs

ω
∂ ~As

y

∂z ¼ s ~As
y − iky ~A

s
z þ sky ~Φs

ω
∂ ~As

z
∂z ¼ ikx ~A

s
x þ iky ~A

s
y

∂ ~Φs

∂z ¼ iω ~As
z

; (16)

where s2 ¼ k2x þ k2y − k2 and t2 ¼ k2x þ k2y are used for conven-
ience. The Gauss FFT method can efficiently overcome the imposed
periodicity and edge effect. Therefore, the boundary conditions in
the horizontal direction are automatically satisfied without extra
consideration.

FEM

The FEM with second-order interpolation (Xu, 1994; Jin, 2015)
is an accurate approach to numerically solve the 1D governing
equation in the mixed domain. Equations 14–16 are the 1D boun-
dary value problems that the secondary EM potentials ( ~As, ~Φs) sat-
isfy. The mesh in the vertical direction can increase with depth due
to the diffusive nature of the EM fields, so that the accuracy and
efficiency can be guaranteed simultaneously. With a chasing
method (Temperton, 1975; Boisvert, 1991; Dai et al., 2019), it is
possible to solve the matrix equation assembled by finite-element
analysis with a low cost even for a large-scale stiffness matrix.

Table 1. The symbols used for different parameters in the
spatial domain and the mixed space-wavenumber domain are
listed.

Parameter name
Spatial
domain

Mixed
domain

Electric field E ~E

Primary electric field Ep ~Ep

Secondary electric field Es ~Es

Magnetic field H —
Magnetic induction intensity B —
Current density JS —
Vector potential A —
Scalar potential Φ —
Fourier wavenumbers — kx, ky
Frequency wavenumbers kp, ks —
Primary vector potential Ap, Φp —
Secondary vector potential As ~As

Secondary scalar potential Φs ~Φs

Components of the secondary
vector potential

As
x, As

y, As
z

~As
x, ~As

y, ~As
z

Components of current density jsx, jsy, jsz ~jsx, ~j
s
y, ~j

s
z

Primary conductivity σp ~σp

Secondary conductivity σs ~σs
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The discrete finite element governing equations are derived with
Galerkin’s weighted residual method (Xu, 1994; Jin, 2015) in the
mixed space-wavenumber domain, and the specific expressions are
shown as (see more details in Appendix B)8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

P
Ne
e¼1

R
e

�
−∂ ~As

x
∂z

∂Ni
∂z þðk2p−k2x−k2yÞNi

~As
xþikxμ0 ~σpNi

~ΦsþNiμ0 ~j
s
x

�
dz

þP
Ne
e¼1

R
sNi

∂ ~As
x

∂z nzdz¼0P
Ne
e¼1

R
e

�
−∂ ~As

y

∂z
∂Ni
∂z þðk2p−k2x−k2yÞNi

~As
yþikyμ0 ~σpNi

~ΦsþNiμ0 ~j
s
y

�
dz

þP
Ne
e¼1

R
sNi

∂ ~As
y

∂z nzdz¼0P
Ne
e¼1

R
e

�
−∂ ~As

z
∂z

∂Ni
∂z þðk2p−k2x−k2yÞNi

~As
z−μ0 ~σ

pNi
∂ ~Φs

∂z þNiμ0 ~j
s
z

�
dz

þP
Ne
e¼1

R
sNi

∂ ~As
z

∂z nzdz¼0P
Ne
e¼1

R
e

�
− ~σp ∂ ~Φs

∂z
∂Ni
∂z þNi

∂ ~σp
∂z

∂ ~Φs

∂z − ~σpðk2xþk2yÞNi
~Φs
�
dzþ

P
Ne
e¼1

R
e

�
−iωNi

∂ ~σp
∂z

~As
zþikxNi

~jsxþikyNi
~jsy−Ni

∂~jsz
∂z

�
dzþP

Ne
e¼1

R
s ~σ

pNi
∂ ~Φs

∂z nzdz¼0

;

(17)

where e represents the index of the elements, Ne is the number of
the total elements, Ni represents the shape function, and nz repre-
sents the normal vector. The mesh used in the study is structured.
In the z-direction (Figure 1), a second-order shape function is used

in the elements. As a result, the secondary vector potential ~As and the
secondary scalar potential ~Φs have two values in each element along
the z-direction. Finally, a full stiffness matrix equation system is as-
sembled by finite-element analysis as (see more details in Appen-
dix C):

Knz×4×23unz×4 ¼ Pnz×4; (18)

where the subscript nz is the number of vertical grid nodes, u is the
unknown vector potential and scalar potential, K is a symmetric
diagonal matrix with 23 rows in each cell, and P is a vector. The linear
matrix equation to be solved is a fixed bandwidth system, and the
chasing method selected is more efficient and convenient than solvers
with preconditioners. Then, the secondary EM potentials ( ~As, ~Φs) can
be obtained in the mixed domain. Although we have to simultane-
ously solve the potentials at every node, the recovery of the fields
in the spatial domain only involves the observational locations and
their neighbor nodes.

EM field components

Equations 3 and 4 can be decomposed into three subequations in
the spatial domain, respectively:8<

:
Ex ¼ iωAx − ∂Φ

∂x
Ey ¼ iωAy − ∂Φ

∂y
Ez ¼ iωAz − ∂Φ

∂z

; (19)

8>>><
>>>:

Hx ¼ 1
μ0

�
∂Az
∂y − ∂Ay

∂z

�
Hy ¼ 1

μ0

�
∂Ax
∂z − ∂Az

∂x

�
Hz ¼ 1

μ0

�
∂Ay

∂x − ∂Ax
∂y

� : (20)

The utilization of the vector potential A and the electric potential
Φ with the Coulomb gauge renders clear physical meanings, which
is shown in equations 19 and 20. The vector potential is associated
with currents and accumulated charges at various boundaries; how-
ever, the electric potential is only associated with accumulated
charges. If one applies our modeling strategy to ERT, the E fields
would only have the electric potential remaining in equation 19.
Using Fourier transform on equations 19 and 20 along two hori-

zontal directions, the secondary EM fields in the mixed space-wave-
number domain then satisfy the following equations:8<

:
~Ex ¼ iω ~Ax þ ikx ~Φ
~Ey ¼ iω ~Ay þ iky ~Φ
~Ez ¼ iω ~Az − ∂ ~Φ∕∂z

; (21)

8>>>><
>>>>:

~Hx ¼ 1
μ0

�
−iky ~Az −

∂ ~Ay

∂z

�
~Hy ¼ 1

μ0

�
∂ ~Ax
∂z þ ikx ~Az

�
~Hz ¼ 1

μ0
ð−ikx ~Ay þ iky ~AxÞ

; (22)

where ∂ ~Φ∕∂z, ∂ ~Ax∕∂z, and ∂ ~Ay∕∂z can be obtained using the
method of Jin (2015). When equation 18 is solved, the secondary
vector potential ~As and the secondary scalar potential ~Φs and their
derivatives can be used to calculate the secondary EM fields. After-
ward, the 2D inverse Fourier transform is used to recover the fields
in the spatial domain (Tontini et al., 2009; Wu and Tian, 2014).
With the addition of the primary field, the total EM fields and
impedance tensor can be calculated.

Electric field iteration in the spatial domain

The primary electric field rather than the total electric field is used
to solve equation 11 for the first step; then, an approach similar to
the Born approximation is used to iteratively reduce the inaccuracy
of the secondary electric field solved by 1D FEM in the mixed do-
main. To achieve a stable and accurate solution for the EM fields, an
iterative method used in the IE is adopted to update the secondary
electric field and then the total field until the total E field cannot be
further updated.

0.2 km

c = 0.4 km

2 km

2 km

b = 0.4 kma = 0.8 km

Line 1

10 �m100 �m
z

y

x

Observation profile

Figure 1. Synthetic resistivity model. A 10 Ωm anomaly is buried
at 0.2 km depth in a 100 Ωm half-space model. The model region is
2 km3 × 2 km3 × 0.7 km3, and the volume of the conductive
anomaly is 0.8 km3 × 0.4 km3 × 0.4 km3. The resistivities of the
background half-space, the anomaly, and the air are 100, 10, and
108 Ωm, respectively.

3D MT modeling in a mixed domain E209

D
ow

nl
oa

de
d 

02
/1

4/
23

 to
 1

29
.2

41
.2

31
.1

58
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

21
-0

21
6.

1



Based on the Green’s function of the electric field, the electric
field IE can be written as (Avdeev et al., 1997; Hursán and Zhdanov,
2002)

EðrjÞ ¼ EpðrjÞ þ G½ΔσðrÞ · EðrÞ�; (23)

where E is the total field; Ep is the primary field; Δσ is abnormal
conductivity; rj and r represent receiver position and anomaly po-
sition, respectively; and Gð·Þ is a linear operator of

Gð·Þ ¼
ZZZ

V

Ḡðr; r 0Þdv; (24)

where Ḡðr; r 0Þ is the Green’s function of the electric field.
The iterative method can be used to solve equation 23 in the form

of

EðnÞ ¼ Ep þ G½Δσ · Eðn−1Þ�: (25)

The Banach theorem (Gao, 2005) in functional analysis shows that
the convergence condition for equation 25 is

kGðΔσ · ðEðn−1Þ − EðnÞÞÞk < κkΔσ · ðEðn−1Þ − EðnÞÞk;
(26)

where the iterative coefficient κ < 1 is required and k · k represents
the L2 norm. Thus, the condition that satisfies this equation is

kGk < 1: (27)

The operator G, with contraction feature, is modified based on
the energy inequality (Hursán and Zhdanov, 2002; Gao, 2005),
and then the following iterative scheme is constructed to satisfy
the requirement of the operator G:

EðnÞ ¼ αEðnÞ þ βEðn−1Þ; (28)

where

α ¼ 2σp

2σp þ Δσ
; (29)

β ¼ Δσ
2σp þ Δσ

; (30)

in which σp represents background conductivity, Δσ represents the
anomalous conductivity, EðnÞ represents the secondary electric field
calculated with equation 21 in addition with the primary electric
field, and Eðn−1Þ represents the value from the previous iteration
(set as zero for the first iteration). The iterative relationship is used
to update the right side of equation 11 to approximate an accurate
solution. After the finite-element (FE) solution, we recover the total
field E in the spatial domain and then update the total field E with
equation 28. The updated E-field is transformed into the Fourier
domain before the FE matrix is solved again.

RESULTS

Model 1: Comparison with IE algorithm

The cuboid model shown in Figure 1 is used to evaluate the ac-
curacy of 3D MT modeling. The proposed algorithm can be imple-
mented with either the Gauss FFT method or the standard FFT
method with grid expansion (Dai et al., 2019). As previously stud-
ied (see details in Dai et al., 2019), the Gauss FFT and the standard
FFT have advantages and disadvantages with respect to accuracy
and efficiency. In particular, when the model is discretized into a
large number of elements, the standard FFT method with sufficient
grid expansion is a good option; otherwise, the Gauss FFT method
is a preferred option. The grid expansion requires several attempts
to set up the expansion area to guarantee the accuracy. However, it is
not straightforward to model field data with different tests of the
grid expansion; the Gauss FFT is used in this study.
The model region is 2 km3 × 2 km3 × 0.7 km3 and discretized into

51 × 51 × 75 nodes. However, the first two numbers, 51 × 51, re-
present the number of wavenumbers (the same as other examples).
It contains 10 grid points in the vertical direction in the air layer. The
frequencies selected are 0.01, 0.1, 1, and 10 Hz. The volume of a
conductive anomaly is 0.8 km3 × 0.4 km3 × 0.4 km3, and the top
of the anomaly is located at 0.2 km depth. The resistivities of
the homogeneous half-space, anomaly, and air are 100, 10, and
108 Ωm, respectively.
The new approach combined with the iterative scheme is applied

to compute the EM fields. The machine used for calculation has
four Intel(R) i7 cores with 2.60 GHz main frequency and 8 GB
memory. The programming language is Fortran, and the Fortran
code is parallelized with OpenMP.
To verify the accuracy of the final solution, the calculated re-

sponses of the designed model are compared with responses of
the IE solution given by Hursán and Zhdanov (2002). The variation
of iteration fitting errors against iteration number is shown in Fig-
ure 2. The fitting errors of XY mode (x-direction polarization) and
YX mode (y-direction polarization) are less than 0.1% after 10 iter-
ations, and the convergence of YX mode is more stable than XY
mode due to the noncentrosymmetry of the cuboid anomaly. The
simulation in this study iterates 15 times in total. The responses
at 10 Hz obtained from the proposed algorithm using the Gauss
FFT method with the four-node Gaussian quadrature rule are com-
pared with the responses of the IE algorithm in detail (Figure 3).
Their relative differences of jVnew − VIEj∕VIE on the plane of
z = 0 also are shown (Figure 3). The response differences between
the two methods are less than 0.6% (Figure 3), which is generally

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration

10–3

10–2

10–1

100

101

102

F
it

ti
ng

 e
rr

or
 (

%
)

XY mode
YX mode

Figure 2. The fitting error against iteration number for the iterative
approximation of the electric field. The YXmode (y-direction polari-
zation) seems more stable than the XY mode (x-direction polariza-
tion).
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smaller than the error floor of field data. Moreover, the phase data
have even smaller relative differences than the apparent resistivity
data. The relative differences of apparent resistivities and phases
along a selected profile, marked as the red line
in Figure 1, are shown in Figure 4. The responses
of the four different frequencies are compared
with each other. The relative differences of ap-
parent resistivity and phase for 0.01, 0.1, and
1 Hz frequency are smaller than the differences
for 10 Hz (Figure 4a–4d). Again, the relative
differences in the phases are smaller than the rel-
ative differences in apparent resistivities. There-
fore, the accuracy of the proposed algorithm is
reasonable. The computation time for the XY
mode and YX mode at 10 Hz is 44 s using the
proposed method. However, the executable code
of the IE algorithm is run with MATLAB, which
can slow down the efficiency of the IE algorithm.
Thus, the calculation time of the IE algorithm is
not further analyzed. Instead, the calculation ef-
ficiency is studied in the following examples by
comparing our algorithm with other FEM algo-
rithms (Ren et al., 2013; Jahandari and Farquhar-
son, 2017).

Model 2: Comparison with an adaptive
FEM algorithm

A 3D model modified after Zhdanov et al.
(2006) is used to further evaluate the 3D MT
modeling accuracy. The model region is discre-
tized into 101 × 101 × 71 nodes including 10
grid points in the vertical direction in the air layer
(Figure 5). The frequency tested is 0.1 Hz. Two
anomalies, one conductor and one resistor, are
buried in a half-space model. The volume of each
anomaly is 0.4 km3 × 0.4 km3 × 0.4 km3, and the
top of the anomaly is located at 0.2 km depth (Fig-
ure 5). The resistivities of the homogeneous half-
space, conductive anomaly, resistive anomaly, and
air are 100, 10, 1000, and 108 Ωm, respectively.
The solution of our method is compared to the

adaptive FEM solution given by Ren et al. (2013)
based on the same anomaly settings. The re-
sponses at 0.1 Hz calculated using the Gauss
FFT method with the four-node Gaussian quad-
rature rule are plotted together with the responses
at the same frequency from the adaptive FEM al-
gorithm (Figure 6). The proposed algorithm iter-
ates 15 times in total. The reference algorithm
also iterates 15 times. However, the purposes
of the iterations are different in the two algo-
rithms. The former is due to the inaccurate total
E field used to solve equation 11; the latter is due
to the refinement of the FE grids. Because the
algorithm of Ren et al. (2013) has been well
tested, the results of the algorithm are treated
as a reference solution. Clearly, the two results
are very similar to each other (Figure 6a–6d).
The relative differences of the two results

(Vnew − VFEM)/VFEM on the plane of z = 0 are shown in Fig-
ure 6e–6h. The relative differences are in general within 5% except
at a few data points, which are smaller than the typical error floor of

Figure 3. Apparent resistivities and phases at the frequency of 10 Hz calculated via the
proposed algorithm, IE algorithm, and relative differences of the two along the plane of
z = 0: (a) ρxy, (b) ρyx, (c) φxy, and (d) φyx. The relative differences are smaller than
typical noise levels in field data.

–1 –0.5 0 0.5 1
0

a) b)

c) d)

0.2

0.4

0.6

0.8

R
el

at
iv

e 
er

ro
r 

(%
)

Relative error (�xy )

0.01 Hz 0.1 Hz 1 Hz 10 Hz

–1 –0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

R
el

at
iv

e 
er

ro
r 

(%
)

Relative error (�yx )

–1 –0.5 0 0.5 1
X (km)

0

0.05

0.1

0.15

0.2

R
el

at
iv

e 
er

ro
r 

(%
)

Relative error (�xy )

–1 –0.5 0 0.5 1
X (km)

0

0.05

0.1

0.15

0.2

R
el

at
iv

e 
er

ro
r 

(%
)

Relative error (� yx )

Figure 4. The relative differences of apparent resistivities and phases along the central
profile marked in Figure 1: (a) ρxy, (b) ρyx, (c) φxy, and (d) φyx.
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MT field data. Moreover, the phase data show smaller relative
differences than the apparent resistivity data. Therefore, the accu-
racy of the proposed algorithm is reasonable.
The calculation time of our method is 143 s, which is 1199 s less

than the calculation time of the adaptive FEM after 15 iterations in
total. However, the calculation time for the 15th iteration of the

adaptive FEM is only 151 s, which is slightly slower than the time
required by our method. One should note that, without the previous
14 iterations, the final optimal mesh at the 15th iteration would not
be easy to obtain. The maximum memory usage of our algorithm is
0.44 GB, which is 7 GB less than the one used for the adaptive FEM
at the 15th iteration. The calculations have been performed with

four cores, and two anomalies have been intro-
duced in the model; that is why the calculation
time with Ren et al. (2013) is longer than the time
in the original publication. By analyzing the cal-
culation time for this two-anomaly model and a
one-anomaly model with our method and the
adaptive FEM of Ren et al. (2013), respectively,
we can estimate that approximately 70% of the
increased calculation time is caused by the in-
creased model complexity.
One advantage of the proposed algorithm is

that large padding to account for boundary con-
ditions is unnecessary. In this case, our model
size is only 2 km3 × 2 km3 × 1.4 km3. This is
because all of the horizontal information of the
proposed algorithm is in the Fourier domain,
and the Gauss FFT can remove the edge effect
implicitly. In contrast, the model used by Ren
et al. (2013) expands the model region to
140 km3 × 140 km3 × 140 km3. Even though
322,620 elements are used in the algorithm of
Ren et al. (2013) after 15 iterations due to the
efficiency of the adaptive FEM, a larger number
of elements is needed by using other FE methods
to discretize such a model. However, the pro-
posed algorithm transforms the 3D problem into
1D problems to reduce memory demand and
even has a higher efficiency than the algorithm
of Ren et al. (2013).

Model 3: Comparison with a
nonadaptive FEM algorithm

To further test the computational efficiency ad-
vantage of this algorithm, a large mesh is de-
signed for a 3D model with a quasi-spherical
anomaly (Figure 7). The model is discretized into
251 × 251 × 151 nodes and occupies a region of
5 km3 × 5 km3 × 3 km3. A resistive spherical
anomaly, 1000 Ωm, with a radius of 0.4 km is
buried at 1.4 km depth (Figure 7). Surrounding
the sphere is a 100 Ωm half-space. We compare
the algorithm with the one of Jahandari and Far-
quharson (2017), who use an edge-based FEM
but with tetrahedral elements. After careful tests,
6.98 million elements are required for the algo-
rithm of Jahandari and Farquharson (2017) to
provide an accurate modeling result at the obser-
vational locations (251 × 251) in this example.
With the goal-oriented adaptive FEM algorithm
(Ren et al., 2013), the number of elements in the
final iteration should be smaller than the algo-
rithm of Jahandari and Farquharson (2017).
However, the price of generating such efficient

Figure 5. The 3D model modified after Zhdanov et al. (2006). The volume of each
anomaly is 0.4 km3 × 0.4 km3 × 0. km3, and the top of the anomaly body is located
at 0.2 km depth. The resistivities of the background, conductive anomaly, resistive
anomaly, and air are 100, 10, 1000, and 108 Ωm, respectively.

Figure 6. Apparent resistivities and phases at the frequency of 0.1 Hz calculated via the
proposed algorithm and the algorithm of Ren et al. (2013) along the x-axis: (a) ρxy, (b) φxy,
(c) ρyx, and (d) φyx. The corresponding relative differences of the two solutions are shown
in (e–h). The differences generally are within 5% except at a few data points.
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discretization is to iterate the modeling, which is not avoidable with
goal-oriented adaptive FEM.
The responses at 1 Hz have been modeled with the proposed al-

gorithm using the Gauss FFT method with the two-node Gaussian
quadrature rule and with the algorithm of Jahandari and Farquhar-
son (2017), respectively. The responses cannot be further improved
after 11 iterations for the proposed method, and no iteration is re-
quired for the algorithm of Jahandari and Farquharson (2017). The

apparent resistivities and phases at ground level show a resistor be-
neath the observational surface (Figure 8). Because the MT data are
not sensitive to resistors, the maximum apparent resistivity of ρxy
and ρyx is only 103Ωm in both results. The spatial FE results are not
completely symmetric due to the unstructured mesh generation with
TetGen (Si, 2015). In addition, rectilinear grids generally result in
smoother patterns in the data. However, the relative differences,
jVnew − VFEMj∕VFEM, of the two results are small in Figure 8
(<0.4% in apparent resistivities and phases). Even though the
anomaly is approximately spherical, the example shows the poten-
tial of our method to handle complex 3D models with a fine dis-
cretization.
This example also demonstrates the efficiency advantages of the

proposed method. With the proposed method, single-frequency EM
fields for 251 × 251 observation points are computed using the
Gauss FFT method in 1858 s with only four cores, and the largest
memory requirement in the entire calculation is 4.9 GB. However,
with the use of MUMPS, the algorithm of Jahandari and Farquhar-
son (2017) requires 25,750 s computation time and 202 GB
memory in total for four Intel(R) Xeon cores with 2.2 GHz main
frequency. Hence, our proposed algorithm can quickly compute the
EM fields for large-scale models in comparison with the algorithm
of Jahandari and Farquharson (2017) and can promisingly be used
for the 3D MT inversion problem based on either deterministic
schemes or probabilistic schemes, such as the Bayesian method
with a realistic model. The larger the meshing scale, the more ob-

vious the computational efficiency of the algo-
rithm for the 3D MT numerical simulation
(highly speculated the same for ERT and CSEM
methods). In addition, if the standard FFT with
grid expansion is used rather than the Gauss
FFT, the calculation efficiency can be further im-
proved (Dai et al., 2019). However, grid expan-
sion requires several attempts to set up a
sufficient expansion area to guarantee the ac-
curacy.

CONCLUSION

A new 3D MT modeling algorithm in a mixed
space-wavenumber domain is implemented and
presented in this study. The accuracy and effi-
ciency of the newly proposed method are verified
with three synthetic 3D models by the compari-
son with a classical IE solution and two well-
tested FEM solutions.
The algorithm that transforms the 3D spatial

PDEs of the vector-scalar potentials into 1D
equations using Fourier transform along horizon-
tal directions can give sufficient accuracy and
substantial computational advantages over other
published modeling methods. Our method miti-
gates the memory requirement by approximately
94% and 75% in the second and third synthetic
tests, respectively. This indicates that the more
complexity a model has, the more memory re-
quirement reduction the method provides. The
FEM, together with the chasing method, can solve
the 1D vector-scalar potential equations containing
different wavenumbers, and the simulation effi-

Figure 7. A sphere model used for the modeling efficiency study.
Paraview is used for visualization (Ayachit, 2020). Only one-quarter
of the model is shown for ease of visual inspection. The anomaly is
an approximate sphere with a radius of approximately 0.4 km. Its
resistivity is 1000 Ωm. The resistivities of the background and air
are 100 and 108 Ωm, respectively.

Figure 8. Apparent resistivities and phases at the frequency of 1 Hz calculated via the
proposed algorithm, the FEM algorithm of Jahandari and Farquharson (2017), and the
relative differences of the two along the plane of z = 0: (a) ρxy, (b) ρyx, (c) φxy, and
(d) φyx. The relative differences are smaller than typical noise levels in field data.
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ciency is improved due to the parallelism among different wavenum-
bers and the dimensionality reduction. The new algorithm is approx-
imately 8–12 times faster than other FEM algorithms, suggesting that
our method is a good candidate for the Bayesian inversion. Because
the primary-secondary field separation strategy is applied in our
method, extra consideration is needed for including topography, such
as calculating the responses of topography numerically. It is worth
mentioning that the method also can be used for ERT and CSEM
3D modeling with source inclusion.
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APPENDIX A

BOUNDARY CONDITIONS

In a homogeneous medium, the EM fields satisfy the following
Helmholtz equation:

∂2Es

∂x2
þ ∂2Es

∂y2
þ ∂2Es

∂z2
þ k2Es ¼ 0: (A-1)

The 2D Fourier transform in x- and y-directions is used to express
equation A-1 into the mixed space-wavenumber domain; then, we
obtain

∂2 ~Es

∂z2
− s2 ~Es ¼ 0; (A-2)

where s2 ¼ k2x þ k2y − k2 will be used for compactness of notation.
There is only a downward traveling wave at the lower boundary
based on the propagation law of EM waves:

∂ ~Es

∂z
¼ −s ~Es: (A-3)

Equation A-3 can be written into the subequation form:

(
∂ ~Es

x
∂z ¼ −s ~Es

x
∂ ~Es

y

∂z ¼ −s ~Es
y

: (A-4)

Meanwhile, applying the 2D Fourier transform to equation 4, we
obtain 8<

:
~Es
x ¼ iω ~As

x þ ikx ~Φs

~Es
y ¼ iω ~As

y þ iky ~Φs

~Es
z ¼ iω ~As

z − ∂ ~Φs∕∂z
: (A-5)

Through replacing the electric field with ~Es
x and ~Es

y in equation
A-5, equation A-4 can be rewritten as

� ∂ ~As
x

∂z ¼ −s ~As
x −

skx ~Φs

ω − kx
ω

∂ ~Φs

∂z
∂ ~As

y

∂z ¼ −s ~As
y −

sky ~Φs

ω − ky
ω

∂ ~Φs

∂z

: (A-6)

Similarly, applying the 2D Fourier transform to the Coulomb-
gauge formulation ∇ · A ¼ 0, we obtain

∂ ~As
z

∂z
¼ ikx ~A

s
x þ iky ~A

s
y: (A-7)

In a homogeneous medium, the scalar potential (Φ) satisfies the
following equation:

∂2Φs

∂x2
þ ∂2Φs

∂y2
þ ∂2Φs

∂z2
¼ 0: (A-8)

Meanwhile, applying the 2D Fourier transform to equation A-8,
we obtain

∂2 ~Φs

∂z2
− t2 ~Φs ¼ 0; (A-9)

where t2 ¼ k2x þ k2y is used for convenience. Similarly, the lower
boundary conditions of the scalar potential in a mixed space-wave-
number domain can be obtained:

∂ ~Φs

∂z
¼ −t ~Φs: (A-10)

The lower boundary conditions used in the modeling approach
can be described as

8>>>>><
>>>>>:

∂ ~As
x

∂z ¼ −s ~As
x þ ðt−sÞ

ω kx ~Φs

∂ ~As
y

∂z ¼ −s ~As
y þ ðt−sÞ

ω ky ~Φs

∂ ~As
z

∂z ¼ ikx ~A
s
x þ iky ~A

s
y

∂ ~Φs

∂z ¼ −t ~Φs

: (A-11)

The upper boundary conditions can be obtained by the same der-
ivation method:
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8>>>>><
>>>>>:

∂ ~As
x

∂z ¼ s ~As
x − ikx ~A

s
z þ skx ~Φs

ω
∂ ~As

y

∂z ¼ s ~As
y − iky ~A

s
z þ sky ~Φs

ω
∂ ~As

z
∂z ¼ ikx ~A

s
x þ iky ~A

s
y

∂ ~Φs

∂z ¼ iω ~As
z

: (A-12)

APPENDIX B

THE EQUIVALENCE BETWEEN VARIATIONAL
PROBLEM AND BOUNDARY VALUE PROBLEM

The Galerkin method is used on the vector potential ( ~A) and sca-
lar potential ( ~Φ) system of equations (Xu, 1994; Jin, 2015), and we
can obtain the margin equation:

8>>>>>>><
>>>>>>>:

Re1 ¼ ∂2 ~As
x

∂z2 þ ðk2p − k2x − k2yÞ ~As
x þ ikxμ0 ~σp ~Φs þ μ0~j

s
x

Re2 ¼ ∂2 ~As
y

∂z2 þ ðk2p − k2x − k2yÞ ~As
y þ ikyμ0 ~σp ~Φs þ μ0~j

s
y

Re3 ¼ ∂2 ~As
z

∂z2 þ ðk2p − k2x − k2yÞ ~As
z − ~σpμ0

∂ ~Φs

∂z þ μ0~j
s
z

Re4 ¼ ð ~σp ∂2 ~Φs

∂z2 þ ∂ ~σp
∂z

∂ ~Φs

∂z − ~σpðk2x þ k2yÞ ~ΦsÞ
−iω ~As

z
∂ ~σp
∂z þ ikxjsx þ ikyjsy −

∂~jsz
∂z

:

(B-1)

Letting the weighted integral of equation B-1 in the whole inte-
gral region be zero, we obtain8>>><

>>>:

R
Ω NiRe1dz ¼

P
Ne
e¼1

R
e NiRe1dz ¼ 0R

Ω NiRe2dz ¼
P

Ne
e¼1

R
e NiRe2dz ¼ 0R

Ω NiRe3dz ¼
P

Ne
e¼1

R
e NiRe3dz ¼ 0R

Ω NiRe4dz ¼
P

Ne
e¼1

R
e NiRe4dz ¼ 0

; (B-2)

where Ω is the integral area, Ne is the number of vertical elements,
Niði ¼ j; p;mÞ is the second-order interpolation function, and the
specific expressions can be described as (Xu, 1994)

Nj ¼ ð2Lj − 1ÞLj; Np ¼ 4LjLm; Nm ¼ ð2Lm − 1ÞLm

(B-3)

and

LjðzÞ ¼
zm − z
zm − zj

¼ lj
l
; LmðzÞ ¼

z − zj
zm − zj

¼ lm
l
: (B-4)

Here, zj and zm are the global coordinates in the vertical direction
under the Cartesian coordinate system (Figure B-1).

Substituting margin equation B-1 into equation B-2, we obtain

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

P
Ne
e¼1

R
eNi

�
∂2 ~As

x
∂z2 þðk2p−k2x−k2yÞ ~As

xþikxμ0 ~σp ~Φsþμ0 ~j
s
x

�
dz¼0

P
Ne
e¼1

R
eNi

�
∂2 ~As

y

∂z2 þðk2p−k2x−k2yÞ ~As
yþikyμ0 ~σp ~Φsþμ0 ~j

s
y

�
dz¼0

P
Ne
e¼1

R
eNi

�
∂2 ~As

z

∂z2 þðk2p−k2x−k2yÞ ~As
z− ~σpμ0

∂ ~Φs

∂z þμ0 ~j
s
z

�
dz¼0

PNe
e¼1

R
e

�
Ni

�
~σp ∂2 ~Φs

∂z2 þ ∂ ~σp
∂z

∂ ~Φs

∂z − ~σpðk2xþk2yÞ ~Φs
�
dz

�
þ

P
Ne
e¼1

R
eNi

�
−iω ~As

z
∂ ~σp
∂z

�
þNi

�
ikxjsxþikyjsy−

∂~jsz
∂z

�
dz¼0

:

(B-5)

The Green’s integral formula can be written as

Z
e
ϕ
∂φ
∂z

dz ¼ −
Z
e
φ
∂ϕ
∂z

dzþ
I
∂e
φϕnzdl: (B-6)

Using Green’s formula B-6 to reduce each term of equation B-5, we
obtain

8>>>>><
>>>>>:

R
e Ni

∂2 ~As
x

∂z2 dz ¼ −
R
e
∂ ~As

x
∂z

∂Ni
∂z dzþ

R
s Ni

∂ ~As
x

∂z nzdzR
e Ni

∂2 ~As
y

∂z2 dz ¼ −
R
e
∂ ~As

y

∂z
∂Ni
∂z dzþ

R
s Ni

∂ ~As
y

∂z nzdzR
e Ni

∂2 ~As
z

∂z2 dz ¼ −
R
e
∂ ~As

z
∂z

∂Ni
∂z dzþ

R
s Ni

∂ ~As
z

∂z nzdzR
e Ni

∂ ~σp
∂z

∂ ~Φs

∂z dz ¼ −
R
e ~σ

p ∂ ~Φs

∂z
∂Ni
∂z dzþ

R
s ~σ

p ∂ ~Φs

∂z Ninzdz

:

(B-7)

Therefore, the final coupled equations required to be solved are

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

P
Ne
e¼1

R
e

�
−∂ ~As

x
∂z

∂Ni
∂z þðk2p−k2x−k2yÞNi

~As
xþikxμ0 ~σpNi

~ΦsþNiμ0 ~j
s
x

�
dz

þP
Ne
e¼1

R
sNi

∂ ~As
x

∂z nzdz¼0P
Ne
e¼1

R
e

�
−∂ ~As

y

∂z
∂Ni
∂z þðk2p−k2x−k2yÞNi

~As
yþikyμ0 ~σpNi

~ΦsþNiμ0 ~j
s
y

�
dz

þP
Ne
e¼1

R
sNi

∂ ~As
y

∂z nzdz¼0P
Ne
e¼1

R
e

�
−∂ ~As

z
∂z

∂Ni
∂z þðk2p−k2x−k2yÞNi

~As
z−μ0 ~σ

pNi
∂ ~Φs

∂z þNiμ0 ~j
s
z

�
dz

þP
Ne
e¼1

R
sNi

∂ ~As
z

∂z nzdz¼0P
Ne
e¼1

R
e

�
− ~σp ∂ ~Φs

∂z
∂Ni
∂z þNi

∂ ~σp
∂z

∂ ~Φs

∂z − ~σpðk2xþk2yÞNi
~Φs
�
dzþ

P
Ne
e¼1

R
e

�
−iωNi

∂ ~σp
∂z

~As
zþikxNi

~jsxþikyNi
~jsy−Ni

∂~jsz
∂z

�
dzþP

Ne
e¼1

R
s ~σ

pNi
∂ ~Φs

∂z nzdz¼0

:

(B-8)

APPENDIX C

FINITE-ELEMENT ANALYSIS

The vector and scalar potentials in equation 17 are expressed as a
second-order interpolation function:Figure B-1. Length scheme.
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8>>>>>>><
>>>>>>>:

~Φs ¼ P
3
i¼1 Ni

~Φs
i

~As
x ¼

P
3
i¼1 Ni

~As
xi

~As
y ¼

P
3
i¼1 Ni

~As
yi

~As
z ¼

P
3
i¼1 Ni

~As
zi

ŷp ¼ P
3
i¼1 Niŷpi

~jsz ¼
P

3
i¼1 Ni

~jzi

i ¼ 1; 2; 3: (C-1)

Substituting equation C-1 into equation 17, equation 18 can be
formed by finite-element analysis. The following seven types of in-
tegral cover all integral types of equation 17, and other integral
terms can be found in these seven types of integral.

1) The first element integral form in equation 17 is

Z
e

∂ ~As
x

∂z
∂Ni

∂z
dz¼K1e

~As
xe¼

1

3l

0
B@ 7 −8 1

−8 16 −8
1 −8 7

1
CA
0
B@

~As
xj

~As
xp

~As
xm

1
CA:

(C-2)

2) The second element integral form in equation 17 is

Z
e
Ni

~As
xdz¼K2e

~As
xe¼

l
30

0
B@ 4 2 −1

2 16 2

−1 2 4

1
CA
0
B@

~As
xj

~As
xp

~As
xm

1
CA:

(C-3)

3) The third element integral form in equation 17 is

Z
e
Ni

∂ ~As
x

∂z
dz¼K3e

~As
x¼

1

6

0
@−3 4 −1
−4 0 4

1 −4 3

1
A
0
@ ~As

xi
~As
xj
~As
xm

1
A:

(C-4)

4) The fourth element integral form in equation 17 is

Z
e
Ni

∂ ~σp

∂z
~As
zdz ¼ K4e

~As
ze

¼ l
30

0
B@

k4e11 k4e12 k4e13
k4e21 k4e22 k4e23
k4e31 k4e32 k4e33

1
CA
0
B@

~As
zj

~As
zp

~As
zm

1
CA; (C-5)

where k4e11¼−10~σpj þ12~σpp−2~σpm, k4e12¼−6~σpj þ8~σpp−2~σpm,
k4e13 ¼ ~σpj − ~σpm, k4e21 ¼ −6~σpj þ 8~σpp − 2~σpm, k4e22 ¼ −16~σpj
þ16~σpm, k4e23 ¼ 2~σpj − 8~σpp þ 6~σpm, k4e31 ¼ ~σpj − ~σpm,
k4e32 ¼ 2~σpj − 8~σpp þ 6~σpm, and k4e33 ¼ 2~σpj − 12~σpp þ 10~σpm.

5) The fifth element integral form in equation 17 isZ
e
~σp ~ΦsNidz ¼ K5e

~As
ze

¼ l
420

0
B@

k5e11 k5e12 k5e13
k5e21 k5e22 k5e23
k5e31 k5e32 k5e33

1
CA
0
B@

~Φs
j

~Φs
p

~Φs
m

1
CA; (C-6)

where k5e11¼39~σpj þ20~σpp−3~σpm, k5e12 ¼ 20~σpj þ 16~σpp − 8~σpm,
k5e13 ¼ −3~σpj − 8~σpp − 3~σpm, k5e21 ¼ 20~σpj þ 16~σpp − 8~σpm,
k5e22 ¼ 16~σpj þ 192~σpp þ 16~σpm, k5e23 ¼ −8~σpj þ 16~σpp þ 20~σpm,
k5e31 ¼ −3~σpj − 8~σpp − 3~σpm, k5e32 ¼ −8~σpj þ 16~σpp þ 20~σpm,
and k5e33 ¼ −3~σpj þ 20~σpp þ 39~σpm.

6) The sixth element integral form in equation 17 is

Z
e
Ni

∂ ~σp

∂z
∂ ~Φs

∂z
dz ¼ K6e

~Φs
e

¼ 1

30l

0
B@

k6e11 k6e12 k6e13
k6e21 k6e22 k6e23
k6e31 k6e32 k6e33

1
CA
0
B@

~Φs
j

~Φs
p

~Φs
m

1
CA; (C-7)

where k6e11 ¼ 37~σpj þ 36~σpp − 3~σpm, k6e12 ¼ −6~σpj þ 8~σpp − 2~σpm,
k6e13 ¼ −6~σpj þ 8~σpp − 2~σpm, k6e21 ¼ −44~σpj − 32~σpp − 4~σpm,
k6e22 ¼ 48~σpj þ 64~σpp þ 48~σpm, k6e23 ¼ 2~σpj − 8~σpp þ 6~σpm,
k6e31 ¼ 7~σpj − 4~σpp þ 7~σpm, k6e32 ¼ −4~σpj − 32~σpp − 44~σpm,
and k6e33 ¼ −3~σpj þ 36~σpp þ 37~σpm.

7) The seventh element integral form in equation 17 is

Z
e
~σpNi

∂ ~Φs

∂z
dz ¼ K7e

~Φs
e

¼ 1

30

0
B@

k7e11 k7e12 k7e13
k7e21 k7e22 k7e23
k7e31 k7e32 k7e33

1
CA
0
B@

~Φs
j

~Φs
p

~Φs
m

1
CA; (C-8)

where k7e11 ¼ −10~σpj − 6~σpp þ ~σpm, k7e12 ¼ 12~σpj þ 8~σpp,
k7e13 ¼ −2~σpj − 2~σpp − ~σpm, k7e21 ¼ −6~σpj − 16~σpp þ 2~σpm, k7e22 ¼
8~σpj − 8~σpm, k7e23 ¼ −2~σpj þ 16~σpp þ 6~σpm, k7e31 ¼ 7~σpj − 4~σpp
þ7~σpm, k7e32 ¼ −8~σpp − 12~σpm, and k7e33 ¼ − ~σpj þ 6~σpp þ 10~σpm.
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