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ABSTRACT 10 

A new three-dimensional (3D) magnetotelluric (MT) modelling scheme in a mixed 11 

space-wavenumber domain is presented. The modelling scheme is based on using two-12 

dimensional Fourier transform along two horizontal directions to solve a vector-scalar 13 

potential formula derived from Maxwell’s equations based on the primary-secondary 14 

potential separation. The derived one-dimensional (1D) governing equations in a mixed 15 

space-wavenumber domain are solved by using finite element method (FEM) together 16 

with a chasing method, and then two-dimensional (2D) inverse Fourier transform is 17 

used to recover the final solution of the electromagnetic fields in the 3D spatial domain. 18 

An iterative scheme is applied to approximate the true solution by repeating above steps 19 

since the governing equations cannot be directly solved due to an unusual primary-20 

secondary potential field separation used. Nevertheless, the new method is capable of 21 

reducing the memory requirement and computational time in the mixed domain, and 22 

the 1D governing equations are highly parallel among different wavenumbers. For each 23 

of the 1D equations, the two- or four-node Gaussian quadrature rule can be utilized in 24 
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both horizontal directions for Gauss Fast Fourier Transform. It is worth mentioning that 25 

the linear matrix equation to be solved is a fixed bandwidth system, and the chasing 26 

method is more efficient and convenient than solvers with preconditioners for the 1D 27 

matrix equations. The reliability and efficiency of the newly proposed method are 28 

verified with three synthetic 3D models by comparisons with a classical integral 29 

equation solution, an adaptive FEM solution, and a nonadaptive FEM solution. The 30 

proposed algorithm will be utilized in electrical resistivity tomography and controlled-31 

source electromagnetic methods in future studies.   32 

Keywords: Magnetotellurics; Mixed space-wavenumber domain; Three-dimensional; 33 

Numerical modelling; Fast Fourier transform; Finite element method 34 

INTRODUCTION 35 

 The magnetotelluric (MT) method plays an important role in various applications, 36 

such as crustal structure studies, environment investigation, and resource exploration. 37 

Highly efficient and accurate solutions of three-dimensional (3D) large-scale 38 

electromagnetic (EM) equations become practical to simulate observations from 39 

geophysical surveys and then solve the EM inverse problem (Zhdanov 2010). Many 40 

algorithms have been proposed for 3D MT modelling (e.g., Varentsov 1983, 41 

Wannamaker et al. 1984, Newman & Alumbaugh 2000, Mitsuhata & Uchida 2004, 42 

Egbert & Kelbert 2012, Ren et al. 2013, Jahandari et al. 2017). From the perspective 43 

of solving the EM fields or their potentials, MT forward modelling can be cataloged 44 

into two types: (a) the EM-field approach (Mackie et al., 1994; Varilsuha & 45 

Candansayar, 2018) and (b) the potential approach (Um et al. 2010, Mukherjee & 46 
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Everett 2011, Jahandari & Farquharson 2014, Varilsuha & Candansayar 2018). Both 47 

approaches can accurately solve the relevant partial differential equations (PDE) 48 

derived from Maxwell’s equations with consideration of an appropriate boundary 49 

condition. 50 

  The EM-field approach solves the conventional EM Helmholtz equation consisting 51 

of either the electric or magnetic fields as unknown quantities in the spatial domain. 52 

The principle of this approach is relatively simple and straightforward, but the main 53 

drawback of the EM-field approach is that it will violate the divergence-free condition 54 

of current due to the accumulation of round-off errors if an iterative solver is used for 55 

simulations with low frequency (Lynch and Paulsen, 1991). The application of the 56 

vectorial finite element method (FEM) to the solutions of the E-field (Sugeng, 1998; 57 

Liu et al., 2008; Farquharson and Miensopust, 2011; Ren et al., 2013; Grayver and 58 

Kolev, 2015; Key, 2016) and H-field (Franke et al., 2007) diffusion equation, however, 59 

overcomes those difficulties mentioned above for the EM-field approach. 60 

 The potential approach that discretizes the EM problem based on a vector-scalar 61 

potential formulation instead of directly using electric and magnetic fields has also been 62 

suggested. Various gauge methods have been used in a vector-scalar potential formula, 63 

and the potential approach can further be divided into the ungauged approach 64 

(Mukherjee and Everett, 2011; Ansari and Farquharson, 2014), Coulomb-gauged 65 

approach (Haber et al. 2000, Jahandari & Farquharson 2014), Lorenz-gauged approach 66 

(Um et al., 2010), and Axial-gauge approach (Varilsuha and Candansayar, 2018). These 67 

approaches have two main features: (1) using vector and scalar potentials allows the 68 
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divergence correction scheme to be included implicitly in the stiffness matrix; (2) there 69 

are more nonzero elements in the assembled large stiffness matrix compared to the EM-70 

field approaches. Although the solutions of the vector and scalar potentials are not 71 

unique, the corresponding EM fields are, however, unique in the ungauged case.  72 

   For either the EM-field approach or the vector-scalar potential approach, integral 73 

equation (IE) method (e.g., Wannamaker et al. 1984, D. B. Avdeev et al. 2002, D. 74 

Avdeev & Avdeeva 2009, Kruglyakov and Bloshanskaya 2017), finite difference (FD) 75 

method (e.g., Varentsov 1983, Mackie et al. 1994, Newman & Alumbaugh 1995, Haber 76 

et al. 2000, Sasaki 2001, Shen 2003), finite volume (FV) method (e.g., Haber et al. 77 

2000, Haber & Ascher 2001, Streich 2009, Jahandari & Farquharson 2014, Jahandari 78 

& Farquharson 2015), and finite element (FE) method (Zunoubi et al., 1999; Nam et 79 

al., 2007; Um et al., 2010; Mukherjee and Everett, 2011; Ren et al., 2013; Ansari and 80 

Farquharson, 2014; Jahandari et al., 2017) are often selected to solve the Helmholtz 81 

equations. Note that an explicit divergence correction is required when using the EM-82 

field approach, and it not only ensures the conservation of currents inside an element 83 

but also speeds up the convergence process by reducing the number of iterations for the 84 

numerical solution (Mackie et al., 1994; Smith, 1996). Direct solvers (e.g., SuperLU 85 

and MUMPS) or iterative solvers (e.g., PETSc and GMRES) can be selected to solve 86 

the assembled matrix equation, which also influences the calculation accuracy and 87 

efficiency (Saad, 2003; Streich, 2009; da Silva et al., 2012; Jahandari and Farquharson, 88 

2014).  89 

  In 3D MT modelling, computation and memory requirements for field data are 90 



 

 5 

enormous, especially when a large-scale sparse linear system is solved. Therefore, 91 

regardless of whether one uses the EM-field approach or the potential approach, further 92 

development of 3D MT modelling algorithm should focus on improving computational 93 

efficiency while preserving high accuracy. From the perspective of differential 94 

equations, we propose to carry out the 3D MT forward modelling by obtaining the 95 

solution in a mixed space-wavenumber domain based on the potential approach. This 96 

method has been used in gravity and magnetic modelling (Dai et al., 2019). Using the 97 

method, the 3D vector-scalar potential PDEs are converted into 1D governing equations 98 

with different independent wavenumbers by 2D Fourier transform along two horizontal 99 

directions in the Cartesian coordinate system. The 1D governing equations with 100 

different wavenumbers support parallel computation on high-performance computers. 101 

In the vertical dimension, the accuracy and the efficiency are balanced by increasing 102 

the mesh size as the depth increases. For the transformed 1D differential equations, the 103 

FEM combined with a chasing approach is applied for an accurate and efficient solution 104 

of 3D MT modelling. Since the total electric field is involved in the final matrix 105 

equation, an iterative approach is required to approximate the final solution. Three 3D 106 

models with different anomalies are used to verify the accuracy and the reliability of 107 

the proposed algorithm by comparisons between the proposed method and a classical 108 

IE method, a spatial domain adaptive FE method, and a spatial domain nonadaptive FE 109 

method. 110 
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BASIC THEORY 111 

Gauged EM potentials  112 

 Assuming the time dependence of  in the frequency domain, the EM fields 113 

satisfy the Maxwell equations 114 

,                             (1) 115 

,                         (2)  116 

where E and H represent the electric field (V/m) and the magnetic field (A/m), 117 

respectively, in frequency domain.  represents angular frequency,  represents the 118 

imaginary unit,  represents the conductivity (S/m),  represents the dielectric 119 

permittivity (F/m), and Js only represents the current density (A/m2). Within the MT 120 

frequency band (~10-5 to 104 Hz), the displacement current is negligible, and the free-121 

space magnetic permeability is . 122 

   The electric field E can be described by a vector potential (A) and a scalar potential 123 

( ) (Haber et al., 2000). Where, A is known as the magnetic potential, and is the 124 

electric potential. The value A is a vector perpendicular to the magnetic induction 125 

intensity B, 126 

.                             (3) 127 

 The electric field E then can be written in terms of the vector potential A and the 128 

scalar potential  as 129 

.                           (4) 130 

 In terms of the EM potentials, equation 2 can be written as the curl-curl equation, 131 
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 Using the vector identity  and the Coulomb gauge 133 

condition of obtains that equation 5 is equivalent to  134 

.                    (6) 135 

Where is wavenumber in the frequency domain, and  represents the 136 

admittivity when the displacement current is negligible. 137 

 The divergence-free condition of current density, , is satisfied as138 

. Thus, to maintain a divergence-free current density, the auxiliary equation 139 

can be written as  140 

.                          (7) 
141 

 Through replacing the electric field with the  combination in equation 4, 
142 

equation 7 can be reformed into      
143 

.                       (8) 
144 

 The system of equations for the vector potential A and scalar potential  can be 
145 

composed of equations 6 and 8 (Haber et al. 2000; Badea et al. 2001) as 
146 

.                      (9) 
147 

   Equation 9 should be solved simultaneously as a coupled matrix equation. There is 
148 

no gauge freedom after applying Coulomb gauge in this system, since the solution’s 
149 

vector potential A and scalar potential  are unique, unlike the ungauged system 
150 

(Varilsuha and Candansayar, 2018). The equations of A and  can be utilized for 3D 
151 

forward modelling of MT, electrical resistivity tomography (ERT), and controlled-
152 

source electromagnetic (CSEM) methods by tuning the current density and frequency 
153 

selection. Meanwhile, only 3D MT modelling is presented in this study to illustrate the 
154 
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methodology and Js term is neglected. 
155 

   When a secondary potential formulation is used to model MT signals, plane waves 156 

can be introduced conveniently by explicitly calculating a set of known primary EM 157 

potentials ( , ). The primary potentials can be the responses of a half-space or 158 

layered electrical resistivity model. The disadvantage of the secondary EM potentials 159 

algorithm is that it cannot be easily used for topography inclusion in 3D EM simulation 160 

due to the lack of a direct solution of the relevant primary potentials. 161 

 The equation of the primary EM potentials ( , ) can be described as  
162 

.                   (10) 

163 

   The secondary EM potentials ( , ) can be defined according to  164 

and . Then, by subtracting the primary potentials from the total potentials, 165 

the governing equation 9 can be rewritten as 166 

.                   (11) 

167 

Where 168 

,                             (12) 

169 

 and  are the wavenumbers corresponding to the primary and secondary EM 170 

potentials, respectively. Similarly,  and  are the conductivity corresponding to 171 

the primary and secondary EM potentials, respectively.  is the total electric 172 

field, where  is the primary field, and  is the second field. In the process of 173 

solving equation 11 for the first iteration, only plane electromagnetic waves  is used 174 

to represent E, and the initial value of the secondary field  is zero. Then, the total 175 
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field E on the right-hand side of equation 11 can be updated iteratively with the sum of 176 

the secondary field  and the primary field . The details of the iterative method 177 

are shown in the end of this section. Equation 11 is different from the conventional 178 

equation used for primary and secondary potential separation. This is because the 179 

conventional equation contains the product of total conductivity and secondary 180 

potential field (e.g. Badea et al., 2001; Chen and Li, 2019), which is equivalent to 181 

complicate convolution after the Fourier Transform.  182 

   Equations 9 and 11 as well as their equivalent equations have been used in several 183 

studies (e.g., Haber et al. 2000, Badea et al. 2001, Jahandari & Farquharson 2015). 184 

However, the computational cost and memory requirements are large (Varilsuha and 185 

Candansayar, 2018) due to the direct solver of the large sparse matrix equation. This 186 

study proposes a new 3D MT modelling method in a mixed space-wavenumber domain 187 

based on equation 11. This simulation method mainly includes four steps starting from 188 

equation 11: (1) Utilize 2D Fourier transform along two horizontal directions; (2) Use 189 

the 1D finite element method to solve 1D differential equations with respect to the 190 

secondary EM potentials ( , ) in the mixed space-wavenumber domain; (3) 191 

Iteratively update the electric field with a contraction operator until convergence; (4) 192 

Recover the EM fields and other parameters, such as the impedance tensor, in the spatial 193 

domain. To be specific, we transform x and y from the spatial domain into the 194 

wavenumber domain using Fourier transform regarding equation 11, then only the 195 

vertical direction, z, is preserved in the spatial domain. The 3D vector-scalar potential 196 

equations are simplified into 1D equations. The given 1D independent differential 197 

sE pE

sA Fs
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equations can be computed in parallel among different wavenumbers, which improves 198 

the efficiency of 3D MT numerical simulation through parallelization. The finite 199 

element method is used to solve the 1D equations of the secondary EM potentials ( ,200 

) subjected to different wavenumbers. Meanwhile, a contraction operator based on 201 

the series expansion is used to iteratively update the secondary electric field until the 202 

field cannot be further updated. This is because the initial total electric field in equation 203 

11 is calculated with a half space model, so that the primary field was used to represent 204 

the total field at the first iteration. Then, the iteration lasts until the secondary electric 205 

field cannot be further updated. After the calculation of the secondary electric field is 206 

done, the secondary magnetic field can be recovered through the corresponding 207 

potential . Finally, using inverse FFT we can add the secondary fields to the spatial 208 

primary EM fields to give the solution of 3D MT modelling in the spatial domain.  209 

Governing equations in the mixed domain  210 

   By utilizing the Coulomb gauge condition, equation 11 can be written into sub-211 

equations in the Cartesian coordinate system as 212 

.               (13) 

213 
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directions, respectively. 
215 

   In two horizontal directions, we transform spatially related parameters into the 216 

wavenumber domain. Then, we obtain  217 

.               (14) 

218 

Where, the symbol ~ marks parameters in a mixed space-wavenumber domain (Table 219 

1), kx and ky are the wavenumbers in the mixed domain. Similar to 3D modelling of 220 
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quadrature rule (Wu and Tian, 2014), and it can efficiently overcome the imposed 226 
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solution computed in the space domain (Wu and Tian 2014, Dai et al. 2019).   229 

Through the above detailed formula derivation, a large-scale 3D complex EM 230 
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Thus, this 3D numerical modelling can be carried out on a multiple-core or a multiple-233 

CPU computer with Open Multi-Processing (OpenMP). It is useful for large-scale EM 234 

surveys due to the reduction of memory demand. To solve equation 14, we have to 235 

iteratively update EM fields as the reason mentioned.  236 

Boundary conditions  237 

 In a source-free region, the boundary conditions for the secondary EM potentials 
238 

( , )  in the mixed space-wavenumber domain used in the modelling are shown as 
239 

equations 15 and 16 (see more details in Appendix A),  
240 

                      (15) 

241 

and 242 

.                     (16) 

243 

Where,  and  are used for convenience. Since the 244 

Gauss-FFT method can efficiently overcome the imposed periodicity and edge effect. 245 

Therefore, the boundary conditions in the horizontal direction are automatically 246 

satisfied without extra consideration. 
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Finite element method  248 

    The finite element method with second-order interpolation (Xu, 1994; Jin, 2015) 249 

is an accurate approach to numerically solve the 1D governing equation in the mixed 250 

domain. Equations 14 – 16 are the 1D boundary value problems that the secondary EM 251 

potentials ( , ) satisfy. The mesh in vertical direction can increase with depth due 252 

to the diffusive nature of the EM fields, so that the accuracy and efficiency can be 253 

guaranteed simultaneously. With a chasing method (Temperton 1975, Boisvert 1991, 254 

Dai et al. 2019) it is possible to solve the matrix equation assembled by finite element 255 

analysis with a low cost even for a large-scale stiffness matrix.  256 

    The discrete finite element governing equations are derived with Galerkin's 257 

weighted residual method (Xu, 1994; Jin, 2015) in the mixed space-wavenumber 258 

domain, and the specific expressions are shown as (see more details in Appendix B) 259 

.     (17) 
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Where, e represents the index of the elements, Ne is the number of the total elements, 261 

Ni represents the shape function, and nz represents the normal vector. The mesh used in 262 

the study is structured.  263 

In the z direction (Figure 1), a second-order shape function is utilized in the 264 

elements. As a result, the secondary vector potential  and the secondary scalar 265 

potential  have two values in each element along the z direction. Finally, a full 266 

stiffness matrix equation system is assembled by finite-element analysis as (see more 267 

details in Appendix C), 268 

Knz×4×23unz×4 = Pnz×4.                       (18) 269 

Where, the subscript nz is the number of vertical grid nodes, u is the unknown vector 270 

potential and scalar potential, K is a symmetric diagonal matrix with 23 rows regarding 271 

each cell, and P is a vector. The linear matrix equation to be solved is a fixed bandwidth 272 

system, and the chasing method selected is more efficient and convenient than solvers 273 

with preconditioners. Then, the secondary EM potentials ( , ) can be obtain in the 274 

mixed domain. Although we have to simultaneously solve the potentials at every node, 275 

however, the recovery of the fields in spatial domain only involves the observational 276 

locations and their neighbor nodes.  277 

EM field components  278 

Equations 3 and 4 can be decomposed into three sub-equations in the spatial 279 

domain, respectively,  280 
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,                          (19) 281 

.                       (20) 282 

The utilization of the vector potential A and the electric potential  with the 283 

Coulomb gauge renders clear physical meanings, which is shown in equations 19 and 284 

20. The vector potential is associated with currents and accumulated charges at various 285 

boundaries; however, the electric potential is only associated with accumulated charges. 286 

If one applies our modelling strategy to ERT, the E fields would only have the electric 287 

potential left in equation 19.     288 

Using Fourier transform on equations 19 and 20 along two horizontal directions, 289 

the secondary EM fields in the mixed space-wavenumber domain then satisfy the 290 

following equations,  291 

,                           (21) 292 

.                     (22) 293 
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equation 18 is solved, the secondary vector potential  and the secondary scalar 295 

potential  and their derivatives can be used to calculate the secondary EM fields. 296 

Afterwards, 2D inverse Fourier transform is used to recover the fields in spatial domain 297 

(Tontini et al., 2009; Wu and Tian, 2014). With addition of the primary field, the total 298 

EM fields and impedance tensor can be calculated.  299 

Electric field iteration in the spatial domain  300 

 The primary electric field rather than total electric field is used to solve equation 301 

11 for the first step, then an approach similar to the Born approximation is utilized to 302 

iteratively reduce the inaccuracy of the secondary electric field solved by 1D FEM in 303 

the mixed domain. In order to achieve a stable and accurate solution for the EM fields, 304 

an iterative method utilized in the integral equation is adopted to update the secondary 305 

electric field and then the total field, until the total E field cannot be further updated.  306 

 Based on the Green’s function of electric field, the electric field integral equation 307 

can be written as (Avdeev et al., 1997; Hursán and Zhdanov, 2002) 308 

,                 (23) 309 

where, E is the total field,  is the primary field, is abnormal conductivity,  310 

and  represent receiver position and anomaly position, respectively, and  is a 311 

linear operator of 312 

.                      (24) 
313 

Where,  is the Green’s function of electric field. 314 

    The iterative method can be used to solve equation 23 in the form of  315 

 .                    (25) 316 
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The Banach theorem (Gao, 2005) in functional analysis shows that the convergence 317 

condition for equation 25 is  318 

.            (26) 319 

Where, the iterative coefficient  is required，and  represents L2 norm. Thus, 320 

the condition that satisfies the above equation is 321 

 .                             (27) 322 

  The operator G, with contraction feature, is modified based on the energy 323 

inequality (Gao, 2005; Hursán and Zhdanov, 2002), and then the following iterative 324 

scheme is constructed to satisfy the requirement of the operator G, 325 

 .                      (28) 326 

Where 327 

      ,                          (29) 328 

 ,                         (30) 329 

where  represents background conductivity,  represents the anomalous 
330 

conductivity. E(n) represents the secondary electric field calculated with equation 21 in 
331 

addition with the primary electric field, and E(n-1) represents value from previous 
332 

iteration (set as 0 for the first iteration). The iterative relationship is used to update the 
333 

right-hand side of equation 11 to approximate an accurate solution. After the FE 
334 

solution, we recovered the total field E in the spatial domain, then updated the total 
335 

field E with equation 28. The updated E-field is transformed into the Fourier domain 
336 

before the FE matrix is solved again.     
337 

( ) ( )( )( ) ( ) ( )( )1 1n n n nG s k s- -D × - < D × -E E E E

1k < ×

1G <

( ) ( ) ( )1α βn n n-= +E E E

2α
2

p

p

s
s s

=
+ Δ

β
2 p

s
s s

=
+
Δ
Δ

ps sΔ



 

 18 

RESULTS 338 

Model 1: Comparison with IE algorithm  339 

   The cuboid model shown in Figure 1 is used to evaluate the accuracy of 3D MT 340 

modelling. The proposed algorithm can be implemented with either the Gauss FFT 341 

method or the standard FFT method with grid expansion (Dai et al., 2019). As 342 

previously studied (see details in Dai et al. 2019), the Gauss FFT and the standard FFT 343 

both have advantages and disadvantages with respect to accuracy and efficiency. 344 

Particularly, when the model is discretized into a large number of elements, the standard 345 

FFT method with sufficient grid expansion is a good option, otherwise, the Gauss FFT 346 

method is a preferred option. The grid expansion requires several attempts to set up the 347 

expansion area to guarantee the accuracy. However, it is not straightforward to model 348 

field data with different tests of the grid expansion; the Gauss FFT is utilized in this 349 

study. 350 

 The model region is 2×2×0.7 km3 and discretized into 51×51×75 nodes. However, 351 

the first two numbers, 51×51, represent the number of wavenumbers (the same as other 352 

examples). It contains 10 grid-points in the vertical direction in the air layer. The 353 

frequencies selected are 0.01, 0.1, 1, and 10 Hz. The volume of a conductive anomaly 354 

is 0.8×0.4×0.4 km3, and the top of the anomaly is located at 0.2 km depth. The 355 

resistivities of the homogeneous half-space, the anomaly, and the air are 100, 10, and 356 

108 Ωm, respectively.  357 

 The new approach combined with the iterative scheme is applied to compute the 358 

EM fields. The machine used for calculation has 4 Intel(R) i7 Cores with 2.60 GHz 359 
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main frequency and 8 GB memory. The programming language is Fortran, and the 360 

Fortran code is parallelized with OpenMP.  361 

 To verify the accuracy of the final solution, the calculated responses of the designed 362 

model are compared with responses of the IE solution given by Hursán & Zhdanov 363 

(2002). The variation of iteration fitting errors against iteration number is shown in 364 

Figure 2. The fitting errors of XY mode (x direction polarization) and YX mode (y 365 

direction polarization) are less than 0.1% after ten iterations, and the convergence of 366 

YX mode is more stable than XY mode due to the non-centrosymmetry of the cuboid 367 

anomaly. The simulation in this study iterates 15 times in total. The responses at 10 Hz 368 

obtained from the proposed algorithm using the Gauss FFT method with the four-node 369 

Gaussian quadrature rule are compared with the responses of the IE algorithm in detail 370 

(Figure 3). Their relative differences of |Vnew - VIE|/ VIE on the plane of z = 0 are also 371 

shown (Figure 3). The response differences between the two methods are less than 0.6 % 372 

(Figure 3), which is generally smaller than the error floor of field data. Moreover, the 373 

phase data have even smaller relative differences than the apparent resistivity data. The 374 

relative differences of apparent resistivities and phases along a selected profile, marked 375 

as red line in Figure 1, are shown in Figure 4. The responses of the four different 376 

frequencies are compared with each other. The relative differences of apparent 377 

resistivity and phase for 0.01, 0.1, and 1 Hz frequency are smaller than the differences 378 

for 10 Hz (Figures 4a-d). Again, the relative differences in the phases are smaller than 379 

the relative differences in apparent resistivities. Therefore, the accuracy of the proposed 380 

algorithm is reasonable. The computation time for the XY mode and YX mode at 10 Hz 381 



 

 20 

is 44 s using the proposed method. However, the executable code of the IE algorithm is 382 

run with MATLAB, which can slow down the efficiency of the IE algorithm. So that, 383 

the calculation time of the IE algorithm is not further analyzed. Instead, the calculation 384 

efficiency is studied in the following examples by comparing our algorithm with other 385 

FEM algorithms (Ren et al., 2013; Jahandari and Farquharson, 2017).   386 

Model 2: Comparison with an adaptive FEM algorithm  387 

   A 3D model modified after Zhdanov et al. (2006) is used to further evaluate the 3D 388 

MT modelling accuracy. The model region is discretized into 101×101×71 nodes 389 

including 10 grid-points in the vertical direction in the air layer (Figure 5). The 390 

frequency tested is 0.1 Hz. Two anomalies, one conductor and one resistor, are buried 391 

in a half-space model. The volume of each anomaly is 0.4×0.4×0.4 km3, and the top of 392 

the anomaly is located at 0.2 km depth (Figure 5). The resistivities of the homogeneous 393 

half-space, the conductive anomaly, the resistive anomaly, and the air are 100, 10, 1000, 394 

and 108 Ωm, respectively.  395 

 The solution of our method is compared with the adaptive FEM solution given by 396 

Ren et al. (2013) based on the same anomaly settings. The responses at 0.1 Hz 397 

calculated using the Gauss FFT method with the four-node Gaussian quadrature rule 398 

are plotted together with the responses at the same frequency from the adaptive FEM 399 

algorithm (Figure 6). The proposed algorithm iterates 15 times in total. The reference 400 

algorithm also iterates 15 times. However, the purposes of the iterations are different in 401 

the two algorithms. The former is due to the inaccurate total E field used to solve 402 

equation 11; the latter is due to the refinement of the FE grids. Since the algorithm of 403 
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Ren et al. (2013) has been well tested, the results of the algorithm are treated as a 404 

reference solution. Clearly, the two results are very similar to each other (Figures 6a-405 

6d). The relative differences of the two results, (Vnew - VFEM)/VFEM, on the plane of z 406 

= 0 are shown in Figures 6e-6h. The relative differences are in general within 5 % 407 

except at a few data points, which is smaller than the typical error floor of MT field 408 

data. Moreover, the phase data show smaller relative differences than the apparent 409 

resistivity data. Therefore, the accuracy of the proposed algorithm is reasonable.  410 

The calculation time of our method is 143 s, which is 1199 s less than the 411 

calculation time of the adaptive FEM after 15 iterations in total. However, the 412 

calculation time for the 15th iteration of the adaptive FEM is only 151 s, which is slightly 413 

slower than the time required by our method. One should note that, without the previous 414 

14 iterations, the final optimal mesh at the 15th iteration would not be easy to obtain. 415 

The maximum memory usage of our algorithm is 0.44 GB, which is 7 GB less than the 416 

one used for the adaptive FEM at the 15th iteration. The calculations were performed 417 

with 4 cores and two anomalies were introduced in the model, that is why the 418 

calculation time with Ren et al. (2013) is longer than the time in the original publication. 419 

By analyzing the calculation time for this two-anomaly model and a one-anomaly 420 

model with our method and the adaptive FEM of Ren et al. (2013) respectively, we can 421 

estimate that about 70 % of the increased calculation time is caused by the increased 422 

model complexity.    423 

 One advantage of the proposed algorithm is that large padding to account for 424 

boundary conditions is unnecessary. In this case, our model size is only 2×2×1.4 km3. 425 
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This is because all the horizontal information of the proposed algorithm is in Fourier 426 

domain and the Gauss FFT can remove the edge effect implicitly. In contrast, the model 427 

used by Ren et al. (2013) expanded the model region to 140×140×140 km3. Even 428 

though 322,620 elements were used in the algorithm of Ren et al. (2013) after 15 429 

iterations due to the efficiency of the adaptive FEM, a larger number of elements are 430 

needed by using other FE methods to discretize such a model. However, the proposed 431 

algorithm transforms the 3D problem into 1D problems to reduce memory demand and 432 

even has a higher efficiency than the algorithm of Ren et al. (2013).   433 

Model 3: Comparison with a non-adaptive FEM algorithm 434 

In order to further test the computational efficiency advantage of this algorithm, a 435 

large mesh is designed for a 3D model with a quasi-spherical anomaly (Figure 7). The 436 

model is discretized into 251×251×151 nodes and occupies a region of 5×5×3 km3. A 437 

resistive spherical anomaly, 1000 Ωm, with a radius of 0.4 km is buried at 1.4 km depth 438 

(Figure 7). Surrounding of the sphere is a 100 Ωm half space. We compare the algorithm 439 

with the one of Jahandari and Farquharson (2017), which uses an edge-based FEM but 440 

with tetrahedral elements. After careful tests, 6.98 million elements are required for the 441 

algorithm of Jahandari and Farquharson (2017) to provide an accurate modelling result 442 

at the observational locations (251×251) in this example. With the goal-oriented 443 

adaptive FEM algorithm (Ren et al., 2013), the number of elements in the final iteration 444 

should be smaller than the algorithm of Jahandari and Farquharson (2017). However, 445 

the price of generating such efficient discretization is to iterate the modelling, which is 446 

not avoidable with goal-oriented adaptive FEM.  447 
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The responses at 1 Hz were modelled with the proposed algorithm using the Gauss 448 

FFT method with the two-node Gaussian quadrature rule and with the algorithm of 449 

Jahandari and Farquharson (2017), respectively. The responses cannot be further 450 

improved after 11 iterations for the proposed method, and no iteration is required for 451 

the algorithm of Jahandari and Farquharson (2017). The apparent resistivities and 452 

phases at ground level show a resistor beneath the observational surface (Figure 8). 453 

Because the MT data are not sensitive to resistors, the maximum apparent resistivity of 454 

rxy and ryx is only 103  Ωm in both results. The spatial FE results are not completely 455 

symmetric due to the unstructured mesh generation with Tetgen (Si, 2015). Also, 456 

rectilinear grids generally result in smoother patterns in the data. However, the relative 457 

differences, |Vnew - VFEM|/VFEM, of the two results are small in Figure 8 (< 0.4 % in 458 

both apparent resistivities and phases). Even though the anomaly is approximately 459 

spherical, the example shows the potential of our method to handle complex 3D models 460 

with a fine discretization.  461 

This example also demonstrates the efficiency advantages of the proposed method. 462 

With the proposed method, single-frequency EM fields for 251×251 observation points 463 

were computed using the Gauss FFT method in 1858 s with only 4 cores, and the largest 464 

memory requirement in the entire calculation is 4.9 GB. However, with the usage of 465 

MUMPS, the algorithm of Jahandari and Farquharson (2017) requires 25,750 s 466 

computation time and 202 GB memory in total for 4 Intel(R) Xeon cores with 2.2 GHz 467 

main frequency. Hence, our proposed algorithm can quickly compute the EM fields for 468 

large-scale models in comparison with the algorithm of Jahandari and Farquharson 469 
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(2017) and can promisingly be used for the 3D MT inversion problem based on either 470 

deterministic schemes or probabilistic schemes, such as the Bayesian method with a 471 

realistic model. The larger the meshing scale, the more obvious the computational 472 

efficiency of the algorithm for the 3D MT numerical simulation (highly speculated the 473 

same for ERT and CSEM methods). Additionally, if the standard FFT with grid 474 

expansion is used rather than the Gauss FFT, the calculation efficiency can be further 475 

improved (Dai et al., 2019). However, grid expansion requires several attempts to set 476 

up a sufficient expansion area to guarantee the accuracy.    477 

CONCLUSIONS 478 

 A new 3D MT modelling algorithm in a mixed space-wavenumber domain is 479 

implemented and presented in this study. The accuracy and efficiency of the newly 480 

proposed method are verified with three synthetic 3D models by the comparison with a 481 

classical IE solution and two well-tested FEM solutions.  482 

  The algorithm that transforms the 3D spatial partial differential equations of the 483 

vector-scalar potentials into 1D equations using Fourier transform along horizontal 484 

directions can give sufficient accuracy and substantial computational advantages over 485 

other published modelling methods. Our method mitigates the memory requirement for 486 

about 94 % and 75% in the second and third synthetic tests, respectively. This indicates 487 

that the more complexity a model has, the more memory requirement reduction the 488 

method provides. The finite element method together with the chasing method can solve 489 

the 1D vector-scalar potential equations containing different wavenumbers, and the 490 

simulation efficiency is improved due to the parallelism among different wavenumbers 491 
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and the dimensionality reduction. The new algorithm is about 8-12 times faster than 492 

other FEM algorithms, suggesting our method is a good candidate for the Bayesian 493 

inversion. Since the primary-secondary field separation strategy is applied in our 494 

method, extra consideration is needed for including topography, such as calculating the 495 

responses of topography numerically. It is worth mentioning that the method can also 496 

be used for ERT and CSEM 3D modelling with source inclusion.  497 
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 513 

APPENDIX A: BOUNDARY CONDITIONS 514 

 In a homogeneous medium, the EM fields satisfy the following Helmholtz equation 515 

.                     (A1) 
516 

 The 2D Fourier transform in x and y directions is used to express equation A1 into 517 

the mixed space-wavenumber domain, then we obtain  518 

.                           (A2) 
519 

Where， will be used for compactness of notation. There is only a 520 

downward traveling wave at the lower boundary based on the propagation law of 521 

electromagnetic waves, 522 

.                               (A3) 
523 

 Equations A3 can be written into the sub-equation form 524 

.                              (A4) 
525 

 Meanwhile, applying the 2D Fourier transform to equation 4, we obtain  526 

.                       (A5) 
527 

Through replacing the electric field with  and  in equation A5, equation 
528 

A4 can be rewritten as    529 
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 .                   (A6) 
530 

Similarly, applying the 2D Fourier transform to the Coulomb-gauge formulation 
531 

, we obtain 
532 

.                          (A7) 533 

In a homogeneous medium, the scalar potential ( ) satisfies the following 
534 

equation 
535 

.                       (A8) 536 

Meanwhile, applying the 2D Fourier transform to equation A8, we obtain 537 

.                        (A9) 538 

Where  is used for convenience. Similarly, the lower boundary conditions 539 

of the scalar potential in a mixed space-wavenumber domain can be obtained 540 

.                          (A10) 541 

The lower boundary conditions used in the modelling approach can be described 542 

as, 543 

.                      (A11) 544 

 The upper boundary conditions can be obtained by the same derivation method 
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.                     (A14) 546 
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 548 

APPENDIX B: THE EQUIVALENCE BETWEEN VARIATIONAL PROBLEM 549 

AND BOUNDARY VALUE PROBLEM 550 

The Galerkin method is used on the vector potential ( ) and scalar potential ( ) 551 

system of equations (Xu, 1994; Jin, 2015), and we can obtain the margin equation 552 

.              (B1) 553 

Letting the weighted integral of equation B1 in the whole integral region be zero, 554 

we obtain 555 

 .                     (B2) 556 

Where  is  integral area,  is the number of vertical elements,  is 557 

the second-order interpolation function, and the specific expressions can be described 558 

as (Xu, 1994) 559 
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.                (B4) 562 

Here  and are the global coordinate in the vertical direction under the Cartesian 563 

coordinate system (Figure B1). 564 

                                   565 

                                           566 

                                     567 

Figure B1. Length scheme. 568 

 Substituting margin equation B1 into equation B2, we obtain 569 

.         (B5) 570 

 The Green's integral formula can be written as	571 
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Using Green's formula B6 to reduce each term of equation B5, we obtain 573 
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 Therefore, the final coupled equations required to be solved are 575 

.      (B8) 576 
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 578 

APPENDIX C: FINITE ELEMENT ANALYSIS 579 

The vector and scalar potentials in equation 17 are expressed as a second-order 580 

interpolation function, 581 

.                (C1) 582 

 Substituting equation C1 into equation 17, and equation 18 can be formed by 583 

finite element analysis. The following seven types of integral cover all integral types of 584 

equation 17, and other integral terms can be found in these seven types of integral. 585 

1) The first element integral form in equation 17 is 586 

.               (C2) 587 

2) The second element integral form in equation 17 is 588 

 .               (C3) 589 

3) The third element integral form in equation 17 is 590 

.                (C4) 591 
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4) The fourth element integral form in equation 17 is 592 

.             (C5) 593 

Where， 594 

 595 

5) The fifth element integral form in equation 17 is 596 

.              (C6) 597 

Where， 598 

 599 

6) The sixth element integral form in equation 17 is 600 

.            (C7) 601 

Where，

 

602 

 603 

7) The seventh element integral form in equation 17 is 604 

   
 

  .            (C8) 605 

Where， 606 
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Figure and Table Captions 745 

     746 

Figure 1. Synthetic resistivity model. A 10 Ωm anomaly is buried at 0.2 km depth in a 747 

100 Ωm half-space model. The model region is 2×2×0.7 km3 and the volume of the 748 

conductive anomaly is 0.8×0.4×0.4 km3. The resistivities of the background half-space, 749 

the anomaly, and the air are 100, 10, and 108 Ωm, respectively.   750 

 751 

Figure 2. The fitting error against iteration number for the iterative approximation of 752 

the electric field. The YX mode (y direction polarization) seems more stable than the 753 

XY mode (x direction polarization). 754 

 755 

Figure 3. Apparent resistivities and phases at the frequency of 10 Hz calculated via 756 

the proposed algorithm, the IE algorithm, and the relative differences of the two along 757 

the plane of z = 0, (a) rxy, (b) ryx, (c) , and (d) . The relative differences are 758 

smaller than typical noise levels in field data. 759 

 760 

Figure 4. The relative differences of apparent resistivities and phases along the 761 

central profile marked in Figure 1, (a) rxy, (b) ryx, (c) , and (d) . 762 

 763 

Figure 5. The 3D model modified after Zhdanov et al. (2006). The volume of each 764 

anomaly is 0.4×0.4×0.4 km3, and the top of the anomaly body is located at 0.2 km 765 

depth. The resistivities of the background, the conductive anomaly, the resistive 766 

xyj yxj

xyj yxj
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anomaly, and the air are 100, 10, 1000, and 108 Ωm, respectively. 767 

  768 

Figure 6. Apparent resistivities and phases at the frequency of 0.1 Hz calculated via 769 

the proposed algorithm and the algorithm of Ren et al. (2013) along the x axis, (a) 770 

rxy, (b) , (c) ryx, and (d) . The corresponding relative differences of the two 771 

solutions are shown in (e) - (h). The differences generally are within 5% except at a 772 

few data points.  773 

 774 

Figure 7. A sphere model used for the modelling efficiency study. Paraview is used 775 

for visualization (Ayachit, 2020). Only one-quarter of the model is shown for ease of 776 

visual inspection. The anomaly is an approximate sphere with a radius of about 0.4 777 

km. Its resistivity is 1000 Ωm. The resistivities of background and air are 100 and 108 778 

Ωm, respectively. 779 

 780 

Figure 8. Apparent resistivities and phases at the frequency of 1 Hz calculated via 781 

the proposed algorithm, the FEM algorithm of Jahandari and Farquharson (2017), 782 

and the relative differences of the two along the plane of z = 0, (a) rxy, (b) ryx, (c)783 

, and (d) . The relative differences are smaller than typical noise levels in field 784 

data.  785 

 786 

Table 1. The symbols used for different parameters in the spatial domain and the 787 

mixed space-wavenumber domain are listed. 788 

xyj yxj

xyj yxj
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