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ABSTRACT

Fast and accurate numerical modeling of gravity and mag-
netic anomalies is the basis of field-data inversion and quanti-
tative interpretation. In gravity and magnetic prospecting, the
computation and memory requirements of practical modeling
is still a significant issue, which leads to the difficulty of using
efficient and detailed inversions for large-scale complex models.
A new 3D numerical modeling method for gravity and magnetic
anomaly in a mixed space-wavenumber domain is proposed to
mitigate the difficulties. By performing a 2D Fourier transform
along two horizontal directions, 3D partial differential equations
governing gravity and magnetic potentials in the spatial domain
are transformed into a group of independent 1D differential
equations wrapped with different wavenumbers. Importantly,
the computation and memory requirements of modeling are
greatly reduced by this method. A modeling example with
4,040,100 observations can be finished in approximately 28 s on
a desktop using a single core, and the independent differential

equations are highly parallel among different wavenumbers.
The method preserves the vertical component in the space do-
main, and thus a mesh for modeling can be finer at a shallower
depth and coarser at a deeper depth. In general, the new method
takes into account the calculation accuracy and the efficiency.
The finite-element algorithm combined with a chasing method
is used to solve the transformed differential equations with dif-
ferent wavenumbers. In a synthetic test, a model with prism-
shaped anomalies is used to verify the accuracy and efficiency
of the proposed algorithm by comparing the analytical solution,
our numerical solution, and a well-known numerical solution.
Furthermore, we have studied the balance between computa-
tional accuracy and efficiency using a standard fast Fourier
transform (FFT) method with grid expansion and the Gauss-
FFT method. A model with topography is also used to ex-
plore the ability of modeling topography with our method. The
results indicate that the proposed method using the Gauss-FFT
method has characteristics of fast calculation speed and high
accuracy.

INTRODUCTION

Gravity and magnetics are well-known methods in geophysical
explorations (Blakely, 1996). Recently, they have increasingly been
applied in mineral exploration (Nabighian et al., 2005; Mosher
and Farquharson, 2013; Kamm et al., 2015), delineation of deep
geologic structures (Saleh et al., 2006; Prutkina and Salehb,
2009; Dutra et al., 2012; Aitken et al., 2013), and engineering
and environmental problems (Zunino et al., 2009; Eppelbaum,

2011; Rim and Li, 2012; Pedersen and Bastani, 2016). Highly
efficient and accurate gravity and magnetic methods for large-
scale investigations have consistently been given attention due
to the difficulties in exploration at a couple of kilometer depth,
especially under complex geologic conditions. The numerical
modeling of the gravity and magnetic fields seems particularly
important as a fundamental tool for improving inverse imaging
and high-quality interpretation (Blakely, 1996; Li and Oldenburg,
1996, 1998).
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The forward modeling of gravity and magnetic anomalies are
mainly cataloged into two types: (1) spatial-domain and (2) Fou-
rier-domain methods. Methods in both categories have been devel-
oped to model anomalies caused by different types of sources. The
spatial-domain methods can further be divided into analytical meth-
ods and numerical methods. The analytical methods are more
accurate and straightforward to model anomalies by closed-form
equations. For examples, explicit expressions for horizontal thin
plate with arbitrary polygon (Talwani, 1960) and rectangle (Bhat-
tacharyya, 1964; Nagy, 1966), polyhedron with a triangle as surface
(Paul, 1974), vertical prism with arbitrary side faces (Plouff, 1976),
and vertical cylinder (Singh and Sabina, 1978) were studied at early
time. Later, studies have focused on formula deduction and sim-
plification for complex 3D models (Barnett, 1976; Okabe, 1979;
Furness, 1994; Li and Chouteau, 1998; Singh and Guptasarma,
2001; Chakravarthi et al., 2002; Holstein, 2002; García-Abdeslem,
2005; Zhang and Jiang, 2017), singular point processing by analytic
integral (Kwok, 1991), the boundary field continuity problem (Li
and Chouteau, 1998; Nagy et al., 2000), and the general solution
for a polyhedral body with quadratic density contrast (Ren et al.,
2017a, 2018). An adaptive multilevel fast method has also been de-
veloped to save the gravity and magnetic modeling time (Ren et al.,
2017b). However, the applications are restricted by the complexity
of expressions, large computational costs, and, at most times, re-
stricted application of the analytical expressions. The numerical
methods involved in gravity and magnetic modeling are mainly
finite-difference (Farquharson and Mosher, 2009), finite-volume
(Lelièvre, 2003; Lelièvre and Oldenburg, 2006; Jahandari and
Farquharson, 2013; Guzman, 2015), finite-element (Cai and Wang,
2005; Jahandari and Farquharson, 2013; Maag et al., 2017), and
differential-equation (Haber et al., 2014) methods to obtain the sol-
ution of the Poisson equation related to scalar potentials or fields.
Particularly, when the source elements and/or observation sites are
numerous, the computational cost of forward modeling can still be a
serious issue for 3D inversion.
Fourier-domain methods calculate gravity and magnetic anoma-

lies in Fourier domain, then use inverse Fourier transform to obtain
anomaly fields. These Fourier-domain methods show relatively
high efficiency due to straightforward expressions of the anomaly
fields in the Fourier domain. For examples Bhattacharyya (1966)
deduces the spectral expression of magnetic fields for arbitrary
magnetization, Parker (1972) calculates gravity and magnetic
anomaly by a sum of Fourier transforms, and Pedersen (1978a,
1978b) shows the expressions of vertical cylinder and polyhedron
model in Fourier domain, respectively. Xiong (1984) evaluates the
expression of the 3D gravitational potential in the Fourier domain
for a cuboid model. Much additional research has been carried out
on deriving analytic expressions in the Fourier domain for continu-
ous variation of physical property in models (Wu, 1983; Pedersen,
1985; Feng, 1986; Granser, 1987; Zhao and Yedlin, 1991; Rao et al.,
1993; Chai, 1997), on expressions of the Parker model in the
Fourier domain (Forsberg, 1985), and on the offset-sampling
method (Chai, 1997). Later, the fast Fourier transform (FFT)
method was introduced in gravity modeling. Tontini et al. (2009)
develop a fast forward modeling method for the potential field
anomalies generated by complex 3D sources using 3D FFT, and
study the errors of the standard FFT method with grid expansion.
Phillips et al. (2008) use Markov perturbation of an initial density
model to do inversion. Wu and Tian (2014) and Wu and Chen

(2016) use Gauss FFT to improve the accuracy of the inverse Fou-
rier transform and reduce the influence of the forced periodicity and
the truncation errors caused by the FFT method.
Recently, Fourier-domain methods have gradually been replacing

space-domain methods as the primary option for large-scale, com-
plex 3D gravity and magnetic modeling due to its simplicity, accu-
racy, and efficiency. Particularly, for gravity and magnetic methods,
computation and storage memory requirements for a practical
numerical modeling in the space or Fourier domain are high, which
leads to the difficulty of efficiently using detailed inversions requir-
ing large-scale complex models. In this paper, we propose a 3D
highly efficient and accurate numerical modeling method for grav-
ity and magnetic anomalies in a mixed space-wavenumber domain.
This method converts 3D PDEs in the spatial domain into a group
of independent 1D ordinary differential equations by performing a
2D Fourier transform along horizontal directions. By this method,
the computation and memory requirements of modeling are greatly
reduced and the independent ordinary differential equations are
highly parallel in term of wavenumbers because each equation con-
tains different wavenumbers. The method preserves the vertical di-
rection in the spatial domain; thus, the shallow and the deep meshes
for modeling can be fine and coarse, respectively. By this way, the
accuracy and the efficiency of calculation are taken into account.
In our study, the finite-element method is used to solve the trans-
formed differential equations wrapped with different wavenumbers
and the efficiency of solving the linear equation system with a fixed
bandwidth is improved by a chasing method. In synthetic tests, a
model containing a few prisms is used to verify the accuracy and
efficiency of the proposed method by comparisons between numeri-
cal and analytical or classical solutions. Also, a simple model with
undulated observational surface is used to show the ability of mod-
eling topography. In addition, we have also compared the accuracy
and the efficiency of modeling between using the standard FFT
method with grid expansion and using the Gaussian FFT method.

METHODS

Basic theory

The gravitational potential that satisfies the Poisson equa-
tion (Blakely, 1996) can be described as

∇2Ugðx; y; zÞ ¼ −4πGρðx; y; zÞ; (1)

where Ug presents the gravitational potential in the spatial domain;
G ¼ 6.674 × 10−11 N · m3∕kg2 is Newton’s gravitational constant;
and ρðx; y; zÞ is the residual density; and x, y, and z represent the
directions in the Cartesian coordinate system. The CGMS unit sys-
tem is often used in gravity prospecting, and the unit of the gravity
field is mGal. Thus, the unit of gravity field in this paper is trans-
formed into mGal through the relationship of 1 m∕s2 ¼ 105 mGal.
The magnetic potential is similar to the gravitational potential.

The magnetic potential of the weak magnetic body (Blakely,
1996) satisfies

∇2Umðx; y; zÞ ¼ ∇ · mðx; y; zÞ; (2)

where Um is the magnetic potential in the spatial domain and
mðx; y; zÞ is the magnetization. The CGMS unit system is also gen-
erally used in magnetic prospecting. The unit of the magnetic field
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is Oe, and its fractional unit is gamma. However, the unit of the
magnetic field in this paper is transformed into nT through the re-
lationship of 1γ ¼ 10−5Oe ¼ 1 nT.
For convenience, the gravity and magnetic potential problem can

be written as

∇2Uðx; y; zÞ ¼ fðx; y; zÞ; (3)

where U represents either gravity or magnetic potential, and f is
equal to −4πGρ and ∇ · m for the gravity and magnetic potentials,
respectively. Transforming equation 3 into the mixed space-
wavenumber domain by the 2D Fourier transform along the lateral
x- and y-directions gives

∂2 ~Uðkx; ky; zÞ
∂z2

− k2 ~Uðkx; ky; zÞ ¼ ~fðkx; ky; zÞ; (4)

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. For the gravitational potential, we have

~fðkx; ky; zÞ ¼ −4πG~ρ: (5)

And, for the magnetic potential, we have

~fðkx; ky; zÞ ¼ ikx ~Mx þ iky ~My þ
∂ ~Mz

∂z
; (6)

where ~Uðkx; ky; zÞ represents either gravity or magnetic potential in
the mixed domain, ~ρðkx; ky; zÞ is the residual density in the mixed
domain, ~Mx, ~My, and ~Mz are the magnetizations in the mixed
domain, i is the imaginary unit, and kx and ky are the wavenumbers
in the directions of x and y, respectively.
Interestingly, equation 4 can be decoupled into a group of inde-

pendent differential equations with respect to different wavenum-
bers after 2D Fourier transform in the horizontal directions. In
this way, a large-scale problem is able to be simplified into a group
of small-scale problems that can be treated independently. The
meshes can be fine and coarse along the vertical direction in the
spatial domain, and it avoids the unnecessary uniformly spaced grid
schemes. Besides, a chasing method is used to solve the linear equa-
tions with a fixed bandwidth to further improve the computation
efficiency. The proposed method dramatically reduces the require-
ments of storage memory and computation cost and is suitable to
the modeling of complex anomalies with the influence of topogra-
phy. The observation sites must be situated at the grid nodes, or they
are obtained by interpolation in practice, and the complex topogra-
phy and source targets may not be exactly modeled by the method.
However, this shortcoming can be mitigated if a fine mesh is used
with the price of increasing computation. The method cannot di-
rectly solve the problems when the observations are made outside
the sources because the observation domain of the gravity or mag-
netic field and the source domain of the density and magnetization
distribution are identical.

Boundary conditions

In a source-free region, the general solution of equation 4 can be
written as

~U ¼ Aekz þ Be−kz; (7)

where A and B are the arbitrary constants.
The upper and lower vertical boundaries have different terms

in equation 7. Taking a derivative with respect to z on equation 7,
there is only one term left in the basic solution of the gravity field
or magnetic field depending on which direction will satisfy the
zero value of the field. No source is located beyond the upper
and lower vertical boundaries so that the boundary conditions
used in the modeling are presented in equations 8 and 9 (Ward
and Hohmann, 1988)

∂ ~U
∂z

����
z¼zmin

¼ k ~U; (8)

∂ ~U
∂z

����
z¼zmax

¼ −k ~U; (9)

where zmin and zmax are the upper and lower boundaries, respec-
tively, in the Cartesian coordinate system (Figure 1).

Potential, fields, and gradient of fields

The gravitational potential in the mixed space-wavenumber
domain can be obtained by solving the ordinary differential equa-
tion 4 under the boundary conditions of equations 8 and 9. The
gravity field g in the spatial domain then can be obtained by
(Blakely, 1996)

g ¼
2
4 gx
gy
gz

3
5 ¼

2
64

∂Ug

∂x
∂Ug

∂y
∂Ug

∂z

3
75: (10)

The gravity gradient tensor can be calculated by

Tg ¼
2
4Tg

xx Tg
xy Tg

xz

Tg
yx Tg

yy Tg
yz

Tg
zx Tg

zy Tg
zz

3
5 ¼

2
664

∂gx
∂x

∂gx
∂y

∂gx
∂z

∂gy
∂x

∂gy
∂y

∂gy
∂z

∂gz
∂x

∂gz
∂y

∂gz
∂z

3
775: (11)

Therefore, using the Fourier transform on equations 10 and 11, the
gravitational potential, fields, and their gradient tensors in the mixed
space-wavenumber domain should satisfy

~g ¼
2
4 ~gx
~gy
~gz

3
5 ¼

2
4 ikx ~U

g

iky ~U
g

−Ck ~Ug

3
5; (12)

~Tg ¼
2
4 ~Tg

xx
~Tg
xy

~Tg
xz

~Tg
yx

~Tg
yy

~Tg
yz

~Tg
zx

~Tg
zy

~Tg
zz

3
5

¼
2
4 −k2x ~Ug −kxky ~Ug −iCkxk ~Ug

−kxky ~Ug −k2y ~Ug −iCkyk ~Ug

−iCkxk ~Ug −iCkyk ~Ug k2 ~Ug

3
5; (13)
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where ~Ug, ~g, and ~Tg represent the gravitational potential, field, and
gradient tensor in the mixed domain, respectively, C represents a

sign function shown as signðz − z 0Þ ¼
�

1 z ≥ z 0

−1 z < z 0 , where z 0

is the vertical coordinate of the density model, and z is the vertical
coordinate of an observational surface.
The magnetic potential and magnetic induction b in the spatial

domain satisfy (Blakely, 1996)

b ¼
2
4 bxby
bz

3
5 ¼ −

2
64

∂Um

∂x
∂Um

∂y
∂Um

∂z

3
75: (14)

The magnetic gradient tensor Tm can be written into

Tm ¼
2
4Tm

xx Tm
xy Tm

xz

Tm
yx Tm

yy Tm
yz

Tm
zx Tm

zy Tm
zz

3
5 ¼

2
664

∂bx
∂x

∂bx
∂y

∂bx
∂z

∂by
∂x

∂by
∂y

∂by
∂z

∂bz
∂x

∂bz
∂y

∂bz
∂z

3
775: (15)

Similar to the gravity derivations above, using the Fourier trans-
form on equations 14 to 15, the magnetic potential, magnetic induc-
tion, and its gradient tensor in the mixed space-wavenumber domain
satisfy the following:

~b ¼
2
4 ~bx
~by
~bz

3
5 ¼ −

2
4 ikx ~U

m

iky ~U
m

−Ck ~Um

3
5; (16)

~Tm ¼

2
64
~Tm
xx

~Tm
xy

~Tm
xz

~Tm
yx

~Tm
yy

~Tm
yz

~Tm
zx

~Tm
zy

~Tm
zz

3
75

¼
2
4 k2x ~U

m kxky ~U
m iCkxk ~U

m

kxky ~U
m k2y ~U

m iCkyk ~U
m

iCkxk ~U
m iCkyk ~U

m −k2 ~Um

3
5; (17)

where ~Um, ~b, and ~Tm represent the magnetic potential, field, and its
gradient tensor in the mixed domain, respectively, and C is the same
as equation 13. Partial derivatives and ∂ ~Um∕∂z can be calculated via
the partial-derivative method based on a quadratic shape function of
the finite-element method (Xu, 1994), when the observation sites
are located inside the sources.

Zero wavenumber processing

In particular, for a zero lateral wavenumber, the ordinary differ-
ential equations 4 and 6 that governs magnetic potential simplify to

∂2 ~Umð0; 0; zÞ
∂z2

¼ ∂ ~Mzð0; 0; zÞ
∂z

: (18)

This is equivalent to the magnetic induction generated by a horizon-
tally layered model regarding magnetization. The magnetic induc-
tion components can be written as

~bxð0; 0; zÞ ¼ 0; (19)

~byð0; 0; zÞ ¼ 0; (20)

~bzð0; 0; zÞ ¼ ~Mzð0; 0; zÞ: (21)

When the wavenumbers are equal to zero, ordinary differential
equations 4 and 5 that govern gravitational potential can be simpli-
fied as

∂2 ~Ugð0; 0; zÞ
∂z2

¼ −4πG~ρð0; 0; zÞ: (22)

It is equivalent to the gravity fields generated by a horizontally lay-
ered model regarding to density. The three components of gravity
field can be written as

~gxð0; 0; zÞ ¼ 0; (23)

~gyð0; 0; zÞ ¼ 0; (24)

~gzð0; 0; zÞ ¼ −4πG
Z

zmax

zmin

signðz − z 0Þ~ρdz 0; (25)

where signðz − z 0Þ is the same sign function as C in equation 13.

Solution of differential equations

The finite-element method based on a quadratic shape function
is applied to solve 1D ordinary differential equation 4. The ver-
tical grids can be arbitrarily adjusted with actual requirements, for
example, fine grids at a shallow depth to approach complex
topography and coarse grids at a deep depth to reduce the number
of grids without unacceptably reducing the accuracy of the sol-
ution. Therefore, the calculation accuracy and efficiency of mod-
eling can be relatively guaranteed simultaneously. The efficiency
can be further improved by using a chasing method to solve the
linear equation system with a fixed bandwidth (Temperton, 1975;
Boisvert, 1991).
The boundary value problem of the gravity and magnetic

potential in the mixed space-wavenumber domain can be des-
cribed as8>>>>>><

>>>>>>:

∂2 ~Uðkx;ky;zÞ
∂z2 − k2 ~Uðkx; ky; zÞ ¼ ~fðkx; ky; zÞ;

∂ ~U
∂z

����
z¼zmin

¼ k ~U;

∂ ~U
∂z

����
z¼zmax

¼ −k ~U:

(26)

Based on the variational principle (Xu, 1994; Jin, 2014), the equiv-
alence of a variational problem to the boundary value problem
shown in equation 26 can be derived as

8<
:Fð ~UÞ ¼ R zmax

zmin

��
∂ ~U
∂z

�
2

þðk ~UÞ2 þ 2 ~f ~U�dzþ k½ð ~UÞ2zmax
þð ~UÞ2zmin

�
;

δFð ~UÞ ¼ 0:

(27)
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In the Cartesian coordinate system (Figure 1), we have a spatial
cell along the z-direction, and the quadratic shape function is used
in each cell. As a result, the potential, magnetization, and residual
density change twice in each cell. We can finally assemble a full
matrix by finite-element analysis cell by cell to obtain the following
equation (see detailed derivations in Appendix A)

Fð ~UÞ ¼ uTKu − 2uTp; (28)

where u is a column vector of potential for each node in the
z-direction and T denotes the transposition of a matrix. The terms
K and p can be written as K ¼PK1e þ

P
K2e þ B1 þ B2 and

p ¼Pð−p1esxe − p2esye − p3eszeÞ, respectively. The detailed
expressions of K1e, K2e, B1, B2, p1e, p2e, p3e, sxe, sye, and sze
are shown in Appendix A. Using the variational principle on
equation 28, we obtain

δFð ~UÞ ¼ δuTð2Ku − 2pÞ ¼ 0: (29)

Due to the arbitrary nature of δuT , equation 29 can be simplified as

Knz×5unz ¼ pnz; (30)

where K is a five-diagonal matrix, p is a column vector, and nz is
the number of vertical nodes. The chasing method can achieve an
efficient and accurate solution for the linear system shown in equa-
tion 30. After equation 30 is solved, it is straightforward to obtain
the gravity and magnetic fields and their gradient tensors in the
mixed domain by equations 12–13 and 16–17. Note that, at a certain
combination of kx and ky, equation 30 is a small-scale problem,
which needs much less computation and memory than solving
the problem directly in 3D spatial domain. Regarding to different
group of kx and ky, parallel computation can also be implemented.
The selection of kx and ky can refer to Wu and Tian (2014). At the
last step, we calculate the potential, fields, and gradient tensors in
the spatial domain by inverse Fourier transform using standard FFT
(Tontini et al., 2009) and Gauss FFT (Wu and Tian, 2014) methods.

RESULTS

Synthetic model

A model composed of five prisms in Figure 2 is used for numeri-
cal experiments to achieve three goals: (1) verify the accuracy and
efficiency of the proposed 3D numerical algorithm in the mixed
space-wavenumber domain, (2) analyze the influences of grid ex-
pansion when using standard FFT method, and (3) compare the ac-
curacy and computational costs between standard FFT method with
grid expansion and the Gauss FFT method.
The modeling region is approximately 60 × 60 × 10 km3. It is

divided into 202 × 202 × 101 nodes resulting in the volume of each
cell being 0.3 × 0.3 × 0.1 km3. One prism anomaly is located at the
center of the model, and four smaller anomalies are symmetric
based on the x- and y-directions. The volume of the central anomaly
is 9 × 9 × 3 km3, and that of the smaller ones is 6 × 6 × 3 km3. The
top of all the anomalies is at a 1.5 km depth.
For the magnetization anomalies, the magnetization rate of the

anomalies χ is 0.01, the inclination angle is 45°, the declination an-
gle is 0°, and the normal magnetic field of the earth is set as 50,000
nT. The residual density ρ is 2000 kg∕m3.

Zmax

Zmin

Observation profile

( , , )x y zM

jz

pz

mz

x

z

y

Figure 1. The anomaly model of density or magnetization. The
upper and lower boundaries Zmin and Zmax for modeling are
marked; x, y, and z are the directions of the Cartesian coordi-
nate system; and zj, zp, and zm are the values used for quadratic
interpolation in finite element along the z-direction.

6 km

9 km

6 km

6 km6 km

60 km

60 km

0
y

x

6 km10 km

y0

9 km6 km

3 km

3 km

z

60 km

a)

b)

Figure 2. Synthetic model, either a density model or a magnetiza-
tion model. (a) A horizontal slice of the model at z ¼ 0 km depth
and (b) the profile section along x ¼ 0 km.
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Figure 4. Numerical solution, analytical solution,
and the error of magnetic fields, (a) bx, (b) by, and
(c) bz, on the plane of x ¼ 0 km. High values of bx
and by are caused by the side boundaries of the
anomalies, and high values of bz are caused by
the top and bottom boundaries of the anomalies.
Errors mainly exist at the positions corresponding
to the locations of anomalies. (d) Relative errors of
magnetic fields along the profile of z ¼ 0 km and
y ¼ 0.3 km. The relatively large relative errors
caused by the boundaries of the central anomaly
in the model, and the maximum relative error of
by at the cusp is also truncated to 1% to show better
error visualization.
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Figure 3. Numerical solution, analytical solution,
and the error of the gravity fields, (a) gx, (b) gy,
and (c) gz, on the plane of z ¼ 0 km. High values
of gx and gy are caused by the side boundaries of
the anomalies, and high values of gz are caused by
the top and bottom boundaries of the anomalies.
Errors mainly exist at the positions corresponding
to the locations of anomalies. (d) Relative errors of
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y ¼ 0.3 km. The relatively large relative errors
caused by the boundaries of the central anomaly
in the model, and the maximum relative error of
gy at the cusp is truncated to 1% to show better
error visualization, and the reason is that at cusp
positions, the field values are extremely small and
very hard to get an accurate solution.
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Algorithm accuracy and efficiency

To verify the accuracy and efficiency of the new 3D numerical
modeling method for gravity and magnetic anomaly in the mixed
space-wavenumber domain, the Gauss-FFT based on four values of
Gaussian points is used in the proposed algorithm due to its high-
precision characteristics (Wu and Tian, 2014). The closed-form sol-
utions (such as Blakely, 1996; Li and Chouteau, 1998; Heath et al.,
2005) of the gravity and magnetic fields, gradient tensors for these
simple prismatic bodies (Figure 2) are used to show the accuracy of
the proposed method.
Three components of gravity and magnetic anomaly fields in

Figures 3 and 4 show that the fields are sensitive to the boundaries
of anomalies. The maximum absolute errors of the gravity and
magnetic anomaly fields are 0.06 mGal and 0.1 nT (Figures 3a–3c
and 4a–4c), respectively. The relative errors of
gravity and magnetic fields along the profile of
z ¼ 0 km and y ¼ 0.3 km are smaller than one
percent except at the corresponding positions
of the anomaly boundaries (Figures 3d and
4d). One clear indication is that the relatively
large errors, especially for gz, by, and bz, are
caused by the strong contrast of anomalies at
either the side boundaries or the top and bottom
boundaries.
Nine components of gravity and magnetic ten-

sors in Figures 5 and 6 show that the gravity and
magnetic gradient tensors are sensitive to either the
boundaries or the corners of anomalies. The maxi-
mum absolute errors of the gravity and magnetic
tensors are 0.6EotvosðEÞ and 2 × 10−4 nT∕m
(Figures 5 and 6), respectively. The large model-
ing errors mostly exist due to the strong contrast
at the positions of anomaly boundaries in the
model. However, the Txy components of the
gravity and magnetic gradient tensor show that
the large values may be caused by the corners
of the anomalies rather than the boundaries.
Generally, the accuracy and reliability of the pro-
posed algorithm are high enough to study the
potential fields or for inverse imaging. If a finer
mesh is used at a price of increased computation,
the absolute errors of the gravity field and gra-
dient tensors could be further reduced.
The proposed method is compared with the

method presented by Tontini et al. (2009) using
the standard FFT and Gauss-FFT (four Gaussian
points) for the same model as in Figure 2. The
code of Zhao et al. (2018) is selected to do the
comparison, because the code has implemented
Tontini’s method with the standard FFT and
Gauss-FFT and is also available. The machine
used has four processors of 3.3 GHz Intel Core
i5 and 16 GB memory in total. The time compar-
isons of our approach to Tontini’s approach with
different numbers of observational surfaces are
shown in Table 1. Tontini’s method with 3D FFT
is more efficient than the proposed method with
2D FFT when standard FFT method is used.
However, the proposed method is more efficient

than Tontini’s method when the Gauss-FFT method is used
(Table 1), which has better accuracy than standard FFT. Thus,
the proposed method is more efficient and suitable for modeling
with the Gauss-FFT method.

Balance between accuracy and efficiency

Accuracy and computational efficiency are two important indica-
tors for the quality of numerical modeling. Wu and Tian (2014) in-
troduce the Gauss FFT method reducing the influence of the
truncated boundary effect to improve the accuracy of the numerical
modeling. This method, though, increases the computation time. To
account for the accuracy and computational cost, we studied the
accuracy and efficiency of the numerical modeling using the stan-
dard FFT method with grid expansion and the Gauss FFT method.
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Figure 5. Numerical solution, analytical solution, and absolute errors of gravity gradient
tensor, (a) Txx component, (b) Txy component, (c) Txz component, (d) Tyy component,
(e) Tyz component, and (f) Tzz component, on the plane of z ¼ 0 km. It seems Txy com-
ponent of gravity gradient tensor contains information of the corners of anomalies. All
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boundaries of the anomalies. Errors mainly exist at the positions corresponding to the
locations of the boundaries of the anomalies.
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First, the relationship between the expansion distance and the depth
of the anomaly as well as other influences on the accuracy of the
algorithm are analyzed.
The expansion coefficient Ke, an important indicator to measure

the extent of expansion, is defined as

Ke ¼
Kb

D
; (31)

where Kb is the expansion distance, D is the depth to the anomaly
center, and Ke reflects the ratio of Kb to D.

Table 1. Comparison of computational time between Tontini’s method (Tontini et al., 2009) and our proposed method for
modeling the vertical component of the gravity field. The model used is shown in Figure 2. The total number of elements Q is
4,040,100. The observation sites are set as 201 × 201 and 201 × 201 × 101 for one observational surface and 101 observational
surfaces, respectively, in Tontini’s method. Tontini’s method sets each element as a parameter, and the proposed method sets
each node as a parameter so that the total observation sites are 202 × 202 and 202 × 202 × 101 in our method. The small
difference of parameterization of the two methods cannot cause an obvious difference of calculation time.

Q Observations Time (s)

Tontini’s
method with
3D FFT

Proposed
method with
2D FFT

Tontini’s
method with
3D Gauss-FFT

Proposed
method with
2D Gauss-FFT

4,040,100 40,401 0.6 1.4 81.4 18.9

4,040,100 0.6 2.1 81.4 27.8
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Figure 6. Numerical solution, analytical solution,
and absolute errors of magnetic gradient tensor,
(a) Txx component, (b) Txy component, (c) Txz
component, (d) Tyy component, (e) Tyz compo-
nent, and (f) Tzz component, on the plane of
z ¼ 0 km. The general features of magnetic gra-
dient tensor are similar to the ones of gravity
gradient tensor in Figure 5.
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The formula of the relative root-mean-square (Rrms) error (Wu,
2016) shown in equation 32 is used to study the accuracy of the
standard FFT method with grid expansion and the Gauss FFT
method for the modeling:

Rrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

M
i¼1

P
L
j¼1ðHij − ĤijÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

M
i¼1

P
L
j¼1 Ĥ

2
ij

q × 100%; (32)

where M and L are the numbers of observation points in the x- and
y-directions, respectively, and Hij and Ĥij represent the numerical
solution and analytic solution, respectively. The Rrms normalizes
the absolute errors to the same error level no matter how large
or small the gravity or magnetic fields and their gradients are.
Table 2 shows that the Rrms of the gravity fields calculated by the

standard FFT method are relatively large when the expansion co-
efficient Ke is less than 10, but it decreases with the increase of
the expansion coefficient. When the expansion coefficient is no less
than 10, the Rrms of the gravity gradient tensors is less than 1%,
whereas the Rrms of the horizontal components of the gravity fields
is relatively large. The accuracy of the proposed algorithm meets the
practical requirements when the expansion coefficient is no less
than 10 based on the study. Thus, the modeling code can be used
for inversion implementation in further study.
Table 2 also shows that the Rrms of using the

Gauss FFT method based on two Gaussian points
is large. The Gauss FFT method based on four
Gaussian points can effectively suppress the
boundary truncation effect and obtain high accu-
racy, but at the expense of greater computation
cost. When the expansion coefficient is 10 for
the standard FFT method, the agreement between
the numerical solution and the analytical solution
of the gravity fields in the observation zone are
decent and the Rrms is less than 1% (Figure 7).
Although the numerical accuracy of the Gauss
FFT method based on four Gauss points is not
reached by the standard FFT method, with the

expansion coefficient of 10 or 15, the standard FFT method is able
to maintain a reasonable balance between accuracy and computa-
tional efficiency and satisfies the requirements for practical appli-
cations.
Table 3 shows that the Rrms of the magnetic fields are relatively

large when the expansion coefficient is less than 10, but it decreases
obviously with the increase of the expansion coefficient. When the
expansion coefficient is no less than 10, the Rrms of the magnetic
field and the magnetic tensor become smaller, and then the Rrms is
almost constant as the expansion coefficient increasing. Also, when
the expansion coefficient is 10, the numerical solution, by the stan-
dard FFT method, and the analytical solution of the magnetic fields
match well in the observation area as shown in Figure 8.
To study the modeling efficiency of the standard FFT method

with the grid extension and Gauss FFT methods, the calculation
time for 1 observational surface and 101 observational surfaces
of the gravity/magnetic fields is compared. The comparisons be-
tween computational time are based on different expansion coeffi-
cients and different Gaussian points.
A comparison of the calculation time obtained with different

Fourier transform methods based on the given model (Figure 2)
is shown in Figure 9. Sequential computation and parallel compu-
tation are used in the comparison. When the expansion coefficient is

Table 2. Rrms of the gravity field and gravity gradient tensors at the surface (z � 0) in percent, where Ke is the expansion
coefficient and N is the number of Gaussian points.

Standard FFT method with grid expansion Gauss FFT method

Mesh generation 244 × 244 304 × 304 406 × 406 508 × 508 610 × 610 202 × 202 202 × 202

Keor N Ke ¼ 2 Ke ¼ 5 Ke ¼ 10 Ke ¼ 15 Ke ¼ 20 N ¼ 2 N ¼ 4

gx 17.4972 7.5090 2.8795 1.4252 0.8114 7.1635 0.0668

gy 17.4972 7.5090 2.8795 1.4252 0.8114 7.1635 0.0668

gz 5.2854 2.4040 1.0168 0.5519 0.3436 3.3666 0.0477

Tg
xx 4.6153 1.8886 0.7106 0.3640 0.2331 4.2048 0.1389

Tg
xy 1.9170 0.4169 0.1946 0.1214 0.1088 7.4030 0.1020

Tg
xz 0.6129 0.1504 0.1255 0.1251 0.1251 2.9833 0.1248

Tg
yy 4.6153 1.8886 0.7106 0.3640 0.2331 4.2048 0.1389

Tg
yz 0.6129 0.1504 0.1255 0.1251 0.1251 2.9833 0.1248

Tg
zz 5.3608 2.2235 0.8442 0.4400 0.2893 2.8806 0.1811
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Figure 7. The numerical and analytical solutions of the gravity fields at the earth’s sur-
face with the expansion coefficient of 10, (a) gx component, (b) gy component, and (c) gz
component. The dotted green line marks the observation area.
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10 (Tables 2 and 3) and the mesh size is 406 × 406 × 101, the
sequential computation time of 1 observational surface with 202 ×
202 data points is 6.6 s (the fifth green circle) and the calculation
time of 101 observational surfaces with 202 × 202 × 101 data
points is 16.8 s (the fifth blue triangle). The difference of the parallel
computation for 202 × 202 data points and 202 × 202 × 101 data
points on the same mesh (the difference between the fifth red star
and the fifth purple diamond) is smaller than the one of the
sequential computation time (the difference between the fifth green
circle and the fifth blue triangle). Even though the calculation
accuracy of the Gauss FFT method based on four Gaussian points
is higher than the standard FFT method with grid extension
(Tables 2 and 3), the runtime of the Gauss FFT method with four
Gaussian points, is more than the standard FFT method regarding
the meshes smaller than the mesh of 610 × 610 × 101 (Figure 9).
However, when the mesh used for standard FFTwith grid extension
is 610 × 610 × 101, the Gauss FFT method shows advantages in
efficiency and accuracy. Interestingly, the runtime difference be-
tween modeling of one observational surface and of 100 observa-
tional surfaces is about two to three times no matter which method
was used and whether parallelization was used. Because the method
solves the equations once to obtain the potential, fields, gradient
tensors for all the observation sites, the increased time for multiple

observational surfaces is mainly spent on the fast 2D Fourier
transforms.

Anomaly with a fluctuated observational surface

The second synthetic model is an anomaly in half-space homo-
geneous media with topography (Figure 10). The minimum and
maximum observational heights are 0.038 and 0.624 km, res-
pectively. The size of the model is 10 × 10 × 1.324 km. An anoma-
lous density of 2000 kg∕m3 is assigned to the anomaly. The size of
the anomaly is 2 × 2 × 0.3 km, and its center is 0.55 km below the
0 km depth. The structured mesh used has 201 × 201 × 101 source
nodes, and 201 × 201 observation sites are distributed on a fluc-
tuated surface that in fact was composed by 31 flat surfaces uni-
formly spaced in the z-direction. This model demonstrates the
ability of our method to model the gravity anomaly with topogra-
phy. The gravity fields on the fluctuated surface are calculated by
our proposed modeling approach with cubic spline interpolation
and the closed-form solution (Blakely, 1996; Li and Chouteau,
1998). Using four processors on the machine, the calculation took
25.3 s. The comparisons for the gravity fields are presented in
Figure 11. The maximal relative error of gx, gy, and gz is no larger
than 0.3%. So that the proposed method shows good numerical

Table 3. Rrms of the magnetic field and magnetic gradient tensors at the surface area in percent, where Ke is the expansion
coefficient and N is the number of Gaussian points.

Standard FFT method with grid expansion Gauss FFT method

Mesh size 244 × 244 304 × 304 406 × 406 508 × 508 610 × 610 202 × 202 202 × 202

Keor N Ke ¼ 2 Ke ¼ 5 Ke ¼ 10 Ke ¼ 15 Ke ¼ 20 N ¼ 2 N ¼ 4

bx 1.0087 0.2275 0.1416 0.1244 0.1222 4.2634 0.1207

by 3.0334 1.2280 0.4697 0.2542 0.1786 3.6880 0.1311

bz 4.3885 1.8159 0.6855 0.3510 0.2230 2.8530 0.1253

Tm
xx 0.5761 0.3650 0.3624 0.3623 0.3622 3.7576 0.3636

Tm
xy 0.6829 0.2410 0.2338 0.2333 0.2332 4.6531 0.2331

Tm
xz 0.4995 0.3322 0.3271 0.3269 0.3269 1.6669 0.3269

Tm
yy 0.6843 0.3960 0.3871 0.3867 0.3866 3.1021 0.3877

Tm
yz 0.4960 0.3633 0.3596 0.3595 0.3595 2.2157 0.3603

Tm
zz 0.4653 0.3491 0.3464 0.3464 0.3463 2.1301 0.3470

The proposed algorithm
Analytic
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Figure 8. The numerical solution and analytical
solution of the magnetic fields at the earth’s sur-
face with the expansion coefficient of 10, (a) bx
component, (b) by component, and (c) bz compo-
nent. The dotted green line marks the observation
area.
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accuracy for the modeling of topography and is suitable for field-
data application in the future.

CONCLUSION

An efficient and accurate 3D numerical modeling of gravity and
magnetic anomaly in the mixed space-wavenumber domain is pro-
posed and implemented in this study. This method transforms the
3D PDE in the spatial domain into a 1D ordinary differential equa-
tion using the 2D Fourier transform along the horizontal directions
so that the memory requirement is greatly reduced. The method pre-
serves the vertical component in the spatial domain; thus, the mesh
for modeling can be fine at the shallow depth and coarse at the deep
depth. This, to some extent, is an advantage for the modeling with
complex topography. Generally, this method takes into account the

modeling accuracy and the calculation efficiency. The finite-
element method is used to solve the ordinary differential equations
containing different wavenumbers, and the efficiency of solving the
linear equations with a fixed bandwidth is further improved by the
chasing method.
In the numerical experiments, a model with five prism anomalies

and a simple model with topography were used to verify the accu-
racy, efficiency, and potential ability of the proposed algorithm. In
addition, we also compared the calculation accuracy and efficiency
of the standard FFT method with grid expansion and the Gaussian
FFT method. The results of the comparisons show that the standard
FFT method with grid expansion and the Gauss-FFT method have
their own advantages in efficiency and accuracy, respectively.
The implementation of parallelization over independent wavenum-
bers dramatically reduces the computation time. Even though the
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Figure 10. An anomaly in a homogeneous half-space with topog-
raphy, and the terrain contours are projected at the surface of
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of 2000 kg∕m3. The volume of the anomaly is 2 × 2 × 0.3 km, and
its center is 0.55 km below the 0 km depth. With topography, the
anomalous responses can still be captured.
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proposed method using standard FFT is slower than Tontini’s
method, the proposed method using Gauss FFT is twice as fast
as Tontini’s method. The proposed method can maintain a desired
balance between accuracy and efficiency. These findings will ben-
efit inversion and quantified interpretation in our future work.
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APPENDIX A

FINITE-ELEMENT ANALYSIS

The integral of the whole modeling region is decomposed into the
sum of the integral of each element, then equation 27 can be re-
formed as

Fð ~UÞ ¼
XZ

e

�
∂ ~U
∂z

�
2

dzþ
XZ

e
ðk ~UÞ2dz

þ 2
XZ

e

~f ~U dzþ kð ~UÞ2zmin
þ kð ~UÞ2zmax

: (A-1)

Based on finite-element theory, we define quadratic shape func-
tion and potential values at the nodes as

N ¼ ðNj; Np; NqÞT
ue ¼ ð ~Uj; ~Up; ~UqÞT

	
: (A-2)

Then, the values at arbitrary position can be written as

u ¼ NTue ¼ uTeN: (A-3)

The first-element integral in equation A-1 is

Z
e

�
∂ ~U
∂z

��
∂ ~U
∂z

�
dz ¼ uTe

2
4Z

e

�
∂N
∂z

∂NT

∂z

�
dz

3
5ue ¼ uTeK1eue;

(A-4)

where

K1e ¼
Z
e

�
∂N
∂z

∂NT

∂z

�
dz ¼ 1

3l

 
7 −8 1

−8 16 −8
1 −8 7

!
: (A-5)

The second-element integral in equation A-1 isZ
e
ðk ~UÞ2dz ¼ uTe

�Z
e
k2NNTdz

�
ue ¼ uTeK2eue; (A-6)

where

K2e ¼
Z
e
k2NNTdz ¼ lk2

30

 
4 2 −1
2 16 2

−1 2 4

!
: (A-7)

And, the third-element integral in equation A-1 isZ
e
2~f ~U dz ¼

Z
e
2ikxjax ~Udzþ

Z
e
2ikyjay ~Udz

þ
Z
e
2
∂jaz
∂z

~Udz: (A-8)

Here, jax, jay, and jaz are shown as

jax ¼ jaxjNj þ jaxpNp þ jaxmNm ¼ NTsxe ¼ sxTeN
jay ¼ jayjNj þ jaypNp þ jaymNm ¼ NTsye ¼ syTeN
jaz ¼ jazjNj þ jazpNp þ jaymNm ¼ NTsze ¼ szTeN

)
;

(A-9)

where sxe, sye, and sze are

sxe ¼ ðjaxj; jaxp; jaxmÞT
sye ¼ ðjayj; jayp; jaymÞT
sze ¼ ðjazj; jazp; jazmÞT

9=
;: (A-10)

The first-element integral in equation A-8 isZ
e
ikxjax ~Udz ¼ uTe

�Z
e
ikxNNTdz

�
sxe ¼ uTep1esxe;

(A-11)

where

p1e ¼
Z
e
ikxNNTdz ¼ ikxl

30

 
4 2 −1
2 16 2

−1 2 4

!
: (A-12)

The second-element integral in equation A-8 isZ
e
ikyjay ~Udz ¼ uTe

�Z
e
ikyNNTdz

�
sye ¼ uTep2esye;

(A-13)
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where

p2e ¼
Z
e
ikyNNTdz ¼ ikyl

30

 
4 2 −1
2 16 2

−1 2 4

!
: (A-14)

The third-element integral in equation A-8 isZ
e

∂jaz
∂z

~Udz ¼ uTe

�Z
e

∂N
∂z

NTdz

�
sze ¼ uTep3esze; (A-15)

where

p3e ¼
Z
e

∂N
∂z

NTdz ¼ 1

6

 −3 −4 1

4 0 −4
−1 4 3

!
: (A-16)

In equation A-1, z ¼ zmin and z ¼ zmax are the vertical coordinate
at the first and last nodes, respectively, and the last two terms of
equation A-1 can be reshaped into

kð ~UÞ2zmin
¼ uTB1u; kð ~UÞ2zmax

¼ uTB2u ; (A-17)

where

B1 ¼
 k · · · 0

· · · · · · · · ·
0 · · · 0

!
; B2 ¼

 
0 · · · 0

· · · · · · · · ·
0 · · · k

!
:

(A-18)

Based on the above finite-element analysis, the final equation can
be written as

Fð ~UÞ ¼ uTKu − 2uTp: (A-19)
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